Supplementary information

Electrochemical kinetics of cerium selenide nano-pebbles: Design of device

grade symmetric configured wide-potential flexible solid-state

supercapacitor

Bidhan Pandit,^{ab} Akanksha Agarwal,^a Priyanka Patel,^a Babasaheb R. Sankapal*^a

^aNano Materials and Device Laboratory, Department of Physics, Visvesvaraya National

Institute of Technology, South Ambazari Road, Nagpur 440010, Maharashtra, India.

^bInstitut Charles Gerhardt Montpellier (ICGM), Université de Montpellier, CNRS, Place Eugène Bataillon, Montpellier, 34095, Cedex 5, France.

Corresponding author

Babasaheb R. Sankapal

E-mail: <u>brsankapal@phy.vnit.ac.in</u>; <u>brsankapal@gmail.com</u>

Tel.: +91 (712) 2801170; Fax No.:- +91 (712) 2223230

S1. Adhesion test

The adherence of the film was checked by using tixo-tape peel-off method. Initially, tixo-tape was stick on upper surface of film and then it was peel-off. The adherence of the film to the stainless steel (SS) substrate was so good that there was very minute change compare to original due to peel-off of some un-adhesive powdery particles from top-surface only. Photos show before and after peel-off image of the film on the SS substrate with no apparent change, exhibiting good adhesion.

Figure S1 Electrode (a) before and (b) after peel-off test for adhesion.

S2. Contact angle analysis

Figure S2: Contact angle for bare stainless steel (SS) substrate and SS/CeSe₂ film.

S3. Electrochemical characterizations

Specific capacitance¹ from the CV curves was calculated with the help of following formula:

$$C_{s} = \frac{1}{2mv\Delta V} \int_{V_{i}}^{V_{f}} I(V) dV \qquad (1)$$

where, C_s , signifies the specific capacitance (F/g), m , indicates mass (g) deposited on SS substrate, ${}^{v}v$, specifies scan rate (V), ${}^{\Delta V}v$, is an functional potential frame and ${}^{v}v_i$,

represents area under the CV curve.

Specific capacitance (C_s), specific energy (E) in Wh/kg and specific power (P) in W/kg from Galvanostatic charge-discharge can be calculated using following equations:

$$C_{s} = \frac{I\Delta t}{m\Delta V}$$
(2)
$$E = \frac{1}{2} \left[\frac{C_{s} \Delta V^{2}}{3.6} \right]$$
(3)
$$P = \frac{3600 \times E}{\Delta t}$$
(4)

where, '*I*' represents current intensity and ' Δt ' denotes discharge time (t) of the experimental charge-discharge curve.

Material	R	СРЕ		R	W	СРЕ		R	Chi
	(Ω)	Y ₀ (F)	n	(Ω)	(Ω)	Y ₀ (F)	n	(Ω)	square
Cerium selenide	3.1	2.95×10 ⁻⁴	0.86	9.24	3.91	17.15×10 ⁻⁴	0.59	47.54	9.71×10 ⁻⁴

Table S1 Equivalent circuit parameters obtained from calculated EIS spectra for the electrode.

References

1. S. Vijayakumar, S.-H. Lee and K.-S. Ryu, *Electrochim. Acta*, 2015, **182**, 979-986.