Hybrid Ag-LiNbO₃ Nanocomposite Thin Films with Tailorable Optical Properties

Jijie Huang^{a*}, Di Zhang^b, Zhimin Qi^b, Bruce Zhang^b and Haiyan Wang^{bc*}

^aSchool of Materials, Sun Yat-sen University, Guangzhou, Guangdong 510275, China ^bSchool of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA ^cSchool of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA

*Correspondence: <u>huangjj83@mail.sysu.edu.cn</u> (J. H.), <u>hwang00@purdue.edu</u> (H. W.).

Figure S1. Microstructure characterizations of the high-density Ag-LNO nanocomposite thin film. (a) schematic illustration; (b) low-mag plan-view STEM image; (c) low-mag cross-sectional STEM image and (d) its corresponding EDS mapping.

Figure S2. Standard θ -2 θ XRD scans of the pure LNO, low-density and high-density Ag-LNO thin films.

Figure S3. AFM characterizations of (a) the pure LNO, (b) low-density and (c) high-density Ag-LNO thin films.

Figure S4. Experimental (solid points) and fitted (solid lines) components at different angles (55°, 65°, 75°) of the ellipsometric parameter Psi (ϕ) vs. wavelength for (a) pure LNO, (b) low-density and (c) high-density Ag-LNO films.

Figure S5. The (a) refractive index n and (b) extinction coefficient k of the pure LNO, low-density and high-density Ag-LNO nanocomposite thin films.

Figure S6. (a) Low-mag STEM image of low-density Ag-LNO grown on STO substrate with (b) corresponding EDS mapping; (c) transmittance spectral of the pure LNO, low-density and high-density Ag-LNO films.