Supporting Information

Giant Photoluminescence Enhancement in MoSe2 Monolayers treated with Oleic Acid Ligands

Arelo O.A Tanoh^{1,2}, Jack Alexander-Webber³, Ye Fan³, Nicholas Gauriot¹, James Xiao¹, Raj Pandya¹, Zhaojun Li¹, Stephan Hofmann³, Akshay Rao¹*

¹Cavendish Laboratory, Cambridge, JJ Thomson Avenue, CB3 0HE, Cambridge, United Kingdom

²Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, Cambridge, United Kingdom

³Department of Engineering, University of Cambridge, JJ Thomson Avenue, CB3 0FA Cambridge, United Kingdom

*E-mail: ar525@cam.ac.uk

SI Figure 1: Effect of Toluene on WS₂ PL

<u>SI Figure 2</u>: Optical micrographs of MoSe₂ monolayers before (LHS) and after (RHS) OA treatment. Scalebar represents 20 μ m. Slight delamination in monolayer 1 attributed to surface tension effects of OA.

SI Figure 3: Gaussian fits of pristine MoSe2 monolayer PL spectra

SI Figure 4: Gaussian fits of OA treated MoSe2 monolayer PL spectra

<u>SI Figure 5 a-b</u>: Time resolved photoluminescence signals for pristine (blue) and OA treated (red) samples with bi-exponential decay fits (red dashed line in pristine spectra and blue dashed lined in OA treated spectra).

<u>SI Figure 6:</u> Variation of slow decay component, τ_2 , of pristine (blue) and OA treated (red) MoSe₂ time resolved PL signals with initial carrier concentration and pump intensities (W cm⁻²).

<u>SI Figure 7</u>: Raw PL spectra of a single spot on a WSe_2 monolayer on Si-SiO₂ (90 nm) treated with OA.

<u>SI Figure 8</u>: Raman spectra of pristine (blue) and OA treated MoSe₂ monolayers on glass substrate.