Electronic Supplementary Information (ESI)

Relating X-Ray Photoelectron Spectroscopy Data to Chemical Bonding in MXenes

Néstor García-Romeral,^a Masoomeh Keyhanian,^{a,b} Ángel Morales-García,^a Francesc Illas^a*

^aDepartament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11,

08028 Barcelona, Spain

^bDepartment of Physical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar 47416-

95447, Iran

e-mail: <u>francesc.illas@ub.edu</u>

Table S1. Experimental results of XPS analysis in MXenes. Bold numbers are selected to compare and discuss our theoretical predictions.

MXene	Region	Binding energy	Asignation	
		(eV)		
Nb ₂ CT _z	O (1s)	530.0	O in Nb ₂ O ₅	
		531.8	O/HO-Nb ₂ C	
		532.4	Water trapped between MXene layer	
	C (1s)	281.8	C in Nb ₂ C	
		282.0	Non-stoichiometric C in Nb ₂ C	
		283.6	Adventitious contamination	
V_2CT_z	O (1s)	529.9	Mixed VO_x and surface oxide groups	
		531.3	Mixed VO _x and surface oxide	
		532.9	groups	
			Water trapped between MXene layer	
	C (1s)	281.8	$C in V_2 C$	
		286.1	Adventitious contamination	
		284.5	Adventitious contamination	
		288.3	Adsorbed methanol	
Ti ₂ CT _z	O (1s)	531.1	C-Ti-O _z	
before		532.0	C-Ti-(OH) _z	
sputtering		533.1	Water trapped between MXene layer	
	C (1s)	281.9	C-Ti-T _z	
		286.2	C-0	
		289.0	C-00	
Ti ₂ CT _z	O (1s)	531.3	C-Ti-O _z	
after		532.2	C-Ti-(OH) _z	
sputtering		533.5	Water trapped between MXene layer	
	C (1s)	281.9	C-Ti-T _z	
		286.2	C-0	
Mo ₂ CT _z	O (1s)	531.1	Mo ₂ CO _x (-O terminated)	[3]
		532.2	$Mo_2C(OH)_x$ (-OH terminated)	
		533.4	Water trapped between MXene layer	
	C (1s)	283.1	Mo-C species	
MultiLayered	O (1s)	530.2	O-Cr-C (-O terminated)	[4]
Cr ₂ CT _z		531.2	HO-Cr-C	
	C (1s)	283.2	C-Cr-T _z	
FewLayered	O (1s)	530.4	O-Cr-C (-O terminated)	[4]
Cr ₂ CT _z		531.6	HO-Cr-C	
	C (1s)	283.5	C-Cr-T _z	

Table S2. Kohn-Sham orbital energy (ϵ_{1s}), Fermi energy (ϵ_F), initial state C(1s) CLBE relative to the Fermi energy of each system (see Eq. 2) and net charge on the C atom (Q_C) of partial relaxed O-terminated M₂CO₂ MXenes. The number of d electrons in the corresponding metal (dⁿ) is also provided. The units of energetic parameters (ϵ_{1s} , ϵ_F , and C(1s) CLBE) are in eV, whereas Q_C units are |e|. Note that the O layers are relaxed maintaining the M₂C fixed at the clean MXene.

MXene	d ⁿ	E _{1s}	ε _F	CLBE	Qc
Ti ₂ CO ₂	d ²	-267.8	-3.6	264.2	-1.9
Zr ₂ CO ₂		-265.6	-2.0	263.6	-1.9
Hf ₂ CO ₂		-265.2	-1.5	263.7	-1.9
V ₂ CO ₂	d ³	-268.0	-2.7	265.3	-1.6
Nb ₂ CO ₂		-267.6	-2.0	265.6	-1.8
Ta ₂ CO ₂		-267.4	-1.6	265.8	-2.1
Cr ₂ CO ₂	d ⁴	-267.7	-2.2	265.5	-1.3
Mo ₂ CO ₂		-268.3	-1.7	266.6	-1.4
W ₂ CO ₂		-267.3	-1.5	265.8	-1.5

Table S3. Kohn-Sham orbital energy (ε_{1s}), Fermi energy (ε_F), initial state O(1s) CLBE relative to the Fermi energy of each system (see Eq. 2) and net charge on the O atom (Q₀) of partial relaxed O-terminated M₂CO₂ MXenes. The number of d electrons in the corresponding metal (dⁿ) is also provided. The units of energetic parameters (ε_{1s} , ε_F , and O(1s) CLBE) are in eV, whereas Q₀ units are |e|. Note that the O layers are relaxed maintaining the M₂C fixed at the clean MXene.

MXene	d ⁿ	E _{1s}	ε _F	CLBE	Qo
Ti ₂ CO ₂	d ²	-508.8	-3.6	505.2	-1.0
Zr ₂ CO ₂		-507.4	-2.0	505.4	-1.2
Hf ₂ CO ₂		-507.0	-1.5	505.5	-1.3
V ₂ CO ₂	d ³	-508.8	-2.7	506.1	-1.0
Nb ₂ CO ₂		-508.3	-2.0	506.3	-1.1
Ta ₂ CO ₂		-508.2	-1.6	506.6	-1.2
Cr ₂ CO ₂	d ⁴	-508.7	-2.2	506.5	-0.9
Mo ₂ CO ₂		-508.6	-1.7	506.9	-0.9
W ₂ CO ₂		-508.2	-1.5	506.7	-1.0

REFERENCES

- 1 M. Naguib, J. Halim, J. Lu, K. M. Cook, L. Hutman, Y. Gopgotsi, and M. W. Barsoum, *J. Am. Chem. Soc.* **2013**, *135*, 15966-15969.
- 2 J. Halim, K. M. Cook, M: Naguib, P. Eklund, Y. Gogotsi, J. Rosen, and M. W. Barsoum, *Appl. Surf. Sci.* **2016**, *362*, 406-417.

3 J. Halim, S. Kota, M. R. Lukatskaya, M. Naguib, M.-Q. Zhao, E. J. Moon, J. Pitock, J. Nanda, S. J. May, Y. Gogotsi, and M. W. Barsoum, *Adv. Funct. Mater.* **2016**, *26*, 3118-3127.

4 B. Soundiraraju, R. Raghavan, and B. K. George, ACS Appl. Nano Mater. 2020, 3, 11007-11016.