Electronic Supplementary Information (ESI)

Mechanically rollable photodetectors enabled by centimetre-scale 2D MoS₂ layer/TOCN composites

Changhyeon Yoo,^a Tae-Jun Ko,^a Sang Sub Han,^{a,c} Mashiyat Sumaiya Shawkat,^{a,d} Kyu Hwan Oh,^c Bo Kyoung Kim,^e Hee-Suk Chung,^e Yeonwoong Jung,^{*a,b,d}

- ^{c.} Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
- ^d Department of Electrical and Computer Engineering, University of Central Florida, Orlando, Florida 32816, USA
- ^{e.} Analytical Research Division, Korea Basic Science Institute, Jeonju 54907, South Korea
- * Corresponding author; <u>veonwoong.jung@ucf.edu</u>

^{a.} NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA

^{b.} Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, USA

Fig. S1 (a) Low-magnification transmission TEM image of CVD-2D MOS_2 layers. The inset image confirms the continuous morphology of the sample. (b) High-resolution TEM (HRTEM) image of the same sample showing Moiré fringes, indicative of vertically-stacked individual 2D layers. (c) Selective area electron diffraction (SAED) pattern obtained from the sample area corresponding to the inset image in (a). (d) AFM height profile obtained from CVD-2D MOS_2 layers grown with Mo of 3 nm thickness.

Fig. S2 (a) Schematic illustrations of the experimental set-ups for photocurrent measurements in unrolled vs. rolled states. An identical sample is illuminated through a slit to ensure an identical illumination area. The rolled sample must exhibit a large variation of the illumination distance, Δd , which becomes larger with increasing the bending curvature. (b) Photo-responsive characteristics from a sample in two distinct states of rolled vs. unrolled, corresponding to the measurement schematics in (a).

Fig. S3 (a) Two-terminal I-V characteristics of two different $MoS_2/TOCN$ samples prepared with Mo seed of 1 and 4 nm thickness. (b) Time-dependent current variation from a rolled $MoS_2/TOCN$ sample prepared with Mo of 4 nm thickness under a periodic LED illumination.

Fig. S4 Time-dependent photocurrents from another sample under a periodic illumination with varying illumination intensities for Mo 1 nm sample which shows linear increase respect to the optical power.

Fig. S5 Time- and rolling number-dependent photocurrents obtained from $MoS_2/TOCN$ samples prepared with Mo of 1 and 6 nm thickness under a periodic LED illumination measured at 5 V.

Fig. S6 (a) Average ΔI_{Max} ($I_{Photo,Max} - I_o$) obtained from Mo 6 nm sample as shown in Fig. 5, during the cyclic unrolling/rolling of 100 times at 5 V. (b) Time-dependent photocurrents corresponding to (a) during 5 s on/off when 625 nm LED illumination intensity was 488 W/m².

Fig. S7 (a) MoS₂/TOCN before (top) and after (bottom) a tight rolling. (b) Optical microscope images before (top) and after (bottom) the rolling.