Electronic Supplementary Material (ESI) for Nanoscale Horizons.

Supporting Information

White luminescent single-crystalline chlorinated graphene quantum dots

Weitao Li, Huazhang Guo, Gao Li, Zhen Chi, Hailong Chen, Liang Wang, Yijian Liu, Keng Chen, Mengying Le, Yu

Han, Luqiao Yin, Robert Vajtai, Pulickel M Ajayan, Yuxiang Weng and Minghong Wu

1. Experimental Procedures

1.1 Synthesis of WGQDs. Typically, 4.0 mL of TCM was dissolved in 6 mL ethanol, and then 100 mg of DAN was added into the solvent under ultrasonic conditions. The as-formed homogeneous solution was transferred to a reactor of Teflon (25 mL) and heated at 230 °C for 12 h to synthesize the WGQDs. Synthesis of other control experimental WGQDs was regulated in different volume ratios (ranging from 10:0 to 5:5 (ethanol: TCM)). Simultaneously, the WGQDs were also synthesized at different temperatures (180-230 °C) and under the same solvent conditions (6:4). After cooling, the mixture colloids were subjected to dialysis (MWCO: 3500 Da) for three days and dried at 60 °C for structural characterization. For optical and applications, the resultant WGQDs were directly used without purification.

For reference, the GQDs without Cl-dopant were synthesized under lacking TCM in the same preparation process of WGQDs, which denoted No-Cl-GQDs, and another comparison GQDs named Lt-GQDs was manufactured at low-temperature of 180 °C in the similar preparation process of WGQDs.

1.2 Material Characterization. Transmission electron microscopy (TEM) was performed on a JEM-2100F electron microscope operating at 200 kV. Atomic force microscopy (AFM) images were taken using an SPM-9600 AFM. X-ray direction (XRD) patterns were obtained with a Rigaku 18 KW D/max-2550 with Cu K α radiation. Absorption, fluorescence, and phosphorescence were registered using a Hitachi 3100 spectrophotometer and a Hitachi 7000 fluorescence spectrophotometer. FTIR spectrum were recognized with a Bio-Rad FTIR spectrometer FTS165. Raman spectra were recorded on a Micro Raman spectrometer (Thermo Scientific DXR) with λ_{ex} = 633 nm. XPS spectra were gathered using a Kratoms Axis Ultra DLD X-ray photoelectron spectrometer.

1.3 Preparation of WLEDs. The WGQDs (150 μ L, 15 mg·mL⁻¹) was added to 1.6 g of ET-821A silica gel and 0.4 g of ET-821B silica gel, and then the mixture was stirred for 15 minutes (50 r·min⁻¹). After that the mixture of WGQDs was added dropwise to a UV-ray chip device with emission wavelength at 390 nm, then the device was dried in an oven at 80 °C for 30 minutes.

1.4 Method of Bioimaging. HeLa cells were cultured according to previous study.¹ Interestingly, the cells were examined under a confocal microscope (Leica TCS SP5) using lasers of 405, 488, 514, 543, and 633 nm. To determine the nuclear targeting of WGQDs, we also use DAPI dye (Keygen Institute of Biotechnology, China) with a concentration of 2 μ g·mL⁻¹ to stain the nucleus of HeLa cells.

1.5 UPS Measurement. UPS measurement was performed with an hv=21.22 eV, He I source (ESCALAB 250XI, Thermo). The WGQDs thin films were prepared from spin-coating on indium tin oxide (ITO) substrates for UPS measurement.

2. Figures S1-S25

Figure S1. The photographs of GQDs prepared at different temperature. From left to right, these samples were prepared at different temperature (180-230 °C, every 10 °C interval) under daylight (left) and UV light irradiation (right).

Figure S2. PL spectra of GQDs synthesized at different temperature (180-230 °C).

Figure S3. The photographs of GQDs synthesized in ethanol solution contained different TCM volume ratio at 230 °C under daylight (left) and UV light irradiation (right).

Figure S4. PL spectra of GQDs synthesized in ethanol solution contained different TCM volume ratio at 230 °C.

Figure S5. The photographs of WGQDs dispersed in different solvents under daylight (left) and UV light irradiation (right). The solvents are water, toluene, N,N-dimethylformamide (DMF), acetone, tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), methanol (MeOH), methyl cyanide (CH3CN), and isopropanol (i-POH) from left to right.

Figure S6. PL spectra of WGQDs dispersed in many solvents at different excitation wavelengths. The solvents are water, toluene, DMF, acetone, THF, DMSO, MeOH, CH₃CN, and i-POH from left to right.

Figure S7. XRD patterns of WGQDs (a), No-Cl-GQDs (b) and Lt-GQDs (c).

Figure S8. The typical Raman spectra of No-Cl-GQDs (a) and Lt-GQDs (b).

Figure S9. The NMR spectroscopy of WGQDs. ¹³C NMR (a) and ¹H NMR (b) spectra of WGQDs.

Figure S10. XPS survey and high-resolution XPS spectra of WGQDs. XPS survey spectrum (a), C1s (b), N1s (c), and O1s (d) spectra of WGQDs.

Figure S11. XPS survey and high-resolution XPS spectra of No-Cl-GQDs. XPS survey spectrum (a), C1s (b), N1s (c), and O1s (d) spectra of No-Cl-GQDs.

Figure S12. XPS survey and high-resolution XPS spectra of Lt-GQDs. XPS survey spectrum (a), C1s (b), Cl2p (c), N1s (d), and O1s (e) spectra of Lt-GQDs.

Figure S13. The fluorescence stability of WGQDs after one week. (3 measurements per group).

Figure S14. Colloidal stability of WGQDs via PL intensity before (black line) and after (red line) drying at 60 °C.

Figure S15. Photostability of WGQDs under 365 nm UV light irradiation. (3 measurements per group).

Figure S16. Ultraviolet photoelectron spectroscopy (UPS) data of WGQDs.

Figure S17. The phosphorescence spectra of WGQDs at different excitation wavelengths.

Figure S18. (a) Results of the global fitting with four exponent decay functions showing four decay associated difference spectra (DADS). (b) Results of the global fitting with four exponent decay functions showing four exponent decay dynamics with time constants 3.0 ps, 99 ps, 3.2 ns and 100 ns. The time constant of 100 ns is arbitrarily fixed during the fitting, since it is much longer than the current time window for collection and cannot be accurately determined. (c) The percentages of the four decay channels in the overall dynamics within the wavelength range constructed according to DADS.

Figure S19. Phosphorescence photographs prepared by printing GQDs synthesized in ethanol solution contained different TCM volume ratio (the TCM volume ratio of a and b is 0%, the TCM volume ratio of c and d is 40%) at 180 $^{\circ}$ C (a and c) and 230 $^{\circ}$ C (b and d).

Figure S20. The phosphorescence spectrum of Lt-GQDs.

Figure S21. CIE color coordinates with different CI doping. CIE color coordinates (a) and photographs of the WLEDs (b) with GQDs synthesized in different TCM volume ratio at 230 °C.

Figure S22. CIE color coordinates with different WGQDs concentration. CIE color coordinates (a) and photographs of the WLEDs (b) with different WGQDs concentration.

Figure S23. HeLa cells imaging with WGQDs excited at 488 nm (a), 514 nm (b), 543 nm (c) and merged all images (d).

Figure S24. Fluorescence intensity analysis of HeLa cells at 405, 488, 514, 543 and 633 nm by Image J. (3 measurements per group).

Figure S25. Cytotoxicity assessment of WGQDs at the imaging dose (20 mg L⁻¹) and higher doses for incubation time varied from 24 to 48 h using HeLa cells. (3 measurements per group)

3. Table S1-S8

Te	emperature (°C)	180	190	200	210	220	230
	QYs (%)	30	30	31	32	33	34
	FWHM (nm)	102	107	110	113	115	120
Table S2. The	QYs and FWHM of GQD	s produced	under differ	ent ratio of T	CM.		
TCM	l volume ratio (%)	0	10	20	30	40	50
	QYs (%)	6	13	17	30	34	33
	FWHM (nm)	56	105	111	114	120	118
Table S3. Prev	ious literature concernii	ng white lu	minescent.				
Refs.	Luminescent	QYs	PL range	FWHM	Арр	lications	Phosphor
	materials	(%)	(nm)	(nm)			escence
2	hybrid	37	370-700	110	١	WLED	NO
	semiconductor bulk materials						
3	Metal-Organic	1.4	400-650	100	Wh	ite-light	NO
	Frameworks				ph	osphor	
4	Double-Layer	25.7	425-600		Thr	ee-color	NO
	Metal-Organic				Lum	inescent	
	Frameworks				Ther	mometry	
5	Lanthanide-based	3.33	475-600		wh	ite light	NO
	gels				emi	itting gel	
6	Covalent organic	64	400-700	120	Flexi	ble white	NO
	frameworks				light	t emitter	
7	A single organic molecule		500-700	100	١	WLED	Yellow
8	Halide Post-	45	450-650	140	١	WLED	NO
	Perovskite-Type						
9	GOQDs		400-700	80	١	WLED	NO
10	CDs	9.0	400-650	110	١	WLED	NO
11	GQDs	3.62	450-750	130	١	WLED	NO
12	GQDs		400-600	100	١	WLED	NO
13	CDs	35	350-550	160	١	WLED	NO
14	GQDs		400-700	110	١	WLED	NO
This	GQDs	34	400-700	120	WL	ED, cell	White
work					imagiı	ng, graphic	
					secu	urity and	
					info	ormation	
					end	cryption	

Table S1. The QYs and FWHM of GQDs produced under different temperature.

Table S4.	The FWHM	of WGQDs	in the	solvents
-----------	----------	----------	--------	----------

Solvent	Ethanol	Water	Toluene	DMF	Acetone	
The FWHM (nm)	120	80	100	103	127	
Solvent	THF	DMSO	MeOH	CH₃CN	i-POH	
The FWHM (nm)	138	111	108	137	130	

Table S5. The elements ratio of WGQDs, No-Cl-GQDs and Lt-GQDs in XPS survey spectra.

Elements	Cl (%)	C (%)	O (%)	N (%)
WGQDs	2.50	82.63	7.84	7.03
No-Cl-GQDs	0	84.52	8.43	7.05
Lt-GQDs	1.32	83.43	7.88	7.37

Table S6. Previous literature concerning Cl-doping GQD/CDs.

Refs.	Cl-doping	Cl content	Single-	I _G /I _D	Fluoresce	Phosphores
	source	(at%)	crystalline	ratio	nt	cence
15	Sucralose	0.89	NO	1.2	Green	NO
16	HCI		NO	1.05		NO
17	HCI	2.8	NO	1.13	White	NO
18	HCI	2	NO		Yellow	NO
19	HCI	3	NO		Blue	NO
20	HCI	0.6	NO		Blue	NO
21	HCI		NO		Blue	NO
22	HCI		NO	1.05	Blue	NO
23	HCI		NO		Blue	NO
This	CHCl ₃	2.5	YES	1.35	White	White
work						

Table S7. CIE color coordinates (x, y), CRI, CCT, and luminous efficacy of WLEDs synthesized in different TCM volume ratio at 230 °C.

TCM volume ratio (%)	CIE (x, y)	CRI	ССТ/К	Luminous efficacy (lm/W)
10	(0.42, 0.49)	67.4	3840	12.36
20	(0.41, 0.46)	72.3	3892	11.32
30	(0.40, 0.42)	72.6	3904	12.71
40	(0.39, 0.38)	70.6	3938	14.92
50	(0.39, 0.39)	73.8	3972	13.11

WGQDs volume (µL)	CIE (x, y)	CRI	ССТ/К	Luminous efficacy (Im/W)
50	(0.28, 0.33)	76.3	8221	12.48
100	(0.34, 0.37)	72.3	5193	11.72
150	(0.39, 0.38)	70.6	3938	14.92
200	(0.40, 0.39)	71.9	3891	13.14
250	(0.41, 0.40)	72.0	3744	12.95
300	(0.42, 0.41)	76.1	3745	12.86

Table S8. CIE color coordinates (x, y), CRI, CCT, and luminous efficacy of WLEDs with different WGQDs concentration.

4. References

- 1. L. Wang, B. Wu, W. T. Li, S. L. Wang, Z. Li, M. Li, D. Y. Pan and M. H. Wu, Adv. Biosys., 2018, 2, 1700191.
- 2. M. Roushan, X. Zhang and J. Li, Angew. Chem. Int. Ed., 2012, 51, 436-439.
- 3. Y. Liu, M. Pan, Q.-Y. Yang, L. Fu, K. Li, S.-C. Wei and C.-Y. Su, Chem. Mater., 2012, 24, 1954-1960.
- 4. L. Qiu, C. Yu, X. Wang, Y. Xie, A. M. Kirillov, W. Huang, J. Li, P. Gao, T. Wu, X. Gu, Q. Nie and D. Wu, *Inorg. Chem.*, 2019, **58**, 4524-4533.
- 5. A. Sebastian, M. K. Mahato and E. Prasad, Soft Matter, 2019, 15, 3407-3417.
- 6. S. Haldar, D. Chakraborty, B. Roy, G. Banappanavar, K. Rinku, D. Mullangi, P. Hazra, D. Kabra and R. Vaidhyanathan, *J. Am. Chem. Soc.*, 2018, **140**, 13367-13374.
- 7. Z. He, W. Zhao, J. W. Y. Lam, Q. Peng, H. Ma, G. Liang, Z. Shuai and B. Z. Tang, Nat. Commun., 2017, 8, 416.
- 8. R. Gautier, F. Massuyeau, G. Galnon and M. Paris, Adv. Mater., 2019, 31, 1807383.
- 9. T. Ghosh and E. Prasad, J. Phys. Chem. C, 2015, 119, 2733-2742.
- 10. L. H. Mao, W. Q. Tang, Z. Y. Deng, S. S. Liu, C. F. Wang and S. Chen, Ind. Eng. Chem. Res., 2014, 53, 6417-6425.
- 11. P. Dong, B. P. Jiang, W. Q. Liang, Y. Huang, Z. J. Shi and X. C. Shen, Inorg. Chem. Front., 2017, 4, 712-718.
- 12. Z. M. Luo, G. Q. Qi, K. Y. Chen, M. Zou, L. H. Yuwen, X. W. Zhang, W. Huang and L. H. Wang, *Adv. Funct. Mater.*, 2016, **26**, 2739-2744.
- 13. Y. Chen, M. Zheng, Y. Xiao, H. Dong, H. Zhang, J. Zhuang, H. Hu, B. Lei and Y. Liu, *Adv. Mater.*, 2016, **28**, 312-318.
- 14. R. Sekiya, Y. Uemura, H. Murakami and T. Haino, Angew. Chem. Int. Ed., 2014, 53, 5619-5623.
- 15. L. F. Wang, Y. Li, Y. M. Wang, W. H. Kong, Q. P. Lu, X. G. Liu, D. W. Zhang and L. T. Qu, ACS Appl. Mater. Interfaces, 2019, **11**, 21822-21829.
- 16. J. Zhao, L. Tang, J. Xiang, R. Ji, J. Yuan, J. Zhao, R. Yu, Y. Tai and L. Song, Appl. Phys. Lett., 2014, 105, 111116.
- 17. X. F. Wang, G. G. Wang, J. B. Li, Z. Liu, Y. X. Chen, L. F. Liu and J. C. Han, Chem. Eng. J., 2019, 361, 773-782.
- 18. X. Li, S. P. Lau, L. Tang, R. Ji and P. Yang, J. Mater. Chem. C, 2013, 1, 7308-7313.
- 19. M. Nafiujjaman, H. Joon, K. S. Kwak and Y.-k. Lee, J. Nanosci. Nanotechnol., 2018, 18, 3793-3799.
- 20. Y. Zhong, Q. Chen, J. Li, X. Pan, Z. Han and W. Dong, Nano, 2017, 12, 1750135.
- 21. J. Li, K. Tang, J. Yu, H. Wang, M. Tu and X. Wang, R. Soc. Open Sci., 2018, 6, 181557.
- 22. J. Zhao, L. Tang, J. Xiang, R. Ji, Y. Hu, J. Yuan, J. Zhao, Y. Tai and Y. Cai, RSC Adv., 2015, 5, 29222-29229.
- 23. Q. Hu, T. Li, L. Gao, X. Gong, S. Rao, W. Fang, R. Gu and Z. Yang, Sensors, 2018, 18, 3416.