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S1. SAXS analysis and rounded cubical form factor

S1.1 Small angle x-ray scattering (SAXS)

Figure S1: SAXS characterization of “cube-like” nanoparticles. The experimental data (cir-
cles with error bars) are fitted with a truncated cube (green line) and with a rounded cube
(red line) model. The optimal fit parameters for both models are given in the figure.

The particle shapes of the nanoparticles were determined from the analysis of SAXS data
(which is only sensitive to the shape of the inorganic core).

For the “cube-like” nanoparticles, a Bruker AXS Nanostar SAXS instrument (Cu Kα) was
used, with the nanoparticles in a dilute solution (0.1 ∗ 1014 NP/ml in Toluol) in Hilgenberg
borosilicate glass capillaries. The measured data, time-normalized and corrected for detector
sensitivity, empty cell, and dark currect, and radially averaged, is shown in Fig. S1 (circles
with error bars). A minor contribution by a structure factor is negligible except possibly at
very small Q.

The data in the Q region from 0.05 − 0.25Å−1 were fitted with two models: the (flat)
truncated cube model used earlier1 on nanoparticles grown in the same way (green line) and
a new model with rounded cubes, described in Sec. S1.2 (red line). Both models include a
log-normal size distribution and provide a reasonable description of the data (the best fit
parameters are given in the figure; note that the fitted size distribution is very similar for
the two models), but particularly in the high-Q region (shaded in grey in Fig. S1) there are
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significant deviations, with the rounded cube model better fitting the experimental data.
Therefore, the rounded cube model is used in this paper for the “cube-like” nanoparticles.

S1.2 Model: Rounded cubical form factor

Figure S2: Rounded cube model for the nanoparticle shape: illustration of the shape for
different amounts of rounding and definition of the rounding factor τ used in modeling.

The model of cubes with a rounded rather than flat truncation is sketched in Fig. S2.
It corresponds to the intersection of a cube and a sphere, and as such can also describe
perfect cubes and perfect spheres, with rounding parameter τ = 1 − 2R/l−1√

3−1
being 0 and 1,

respectively. Intermediate shapes are illustrated in the figure.
The form factor corresponding to this shape is given by the Fourier transform of the

shape, as summarized in the following equations:

FR-Cubes
NP ( ~Q) = F{ρR−Cubes(~r, l, τ)}( ~Q)

with ρR−Cubes(~r, l, τ) = ρCube(~r, l)
⋂

ρSphere(~r, R)

ρCube(~r, l) =

{

ρ0 for |rx| ≤ l
2

∧ |ry| ≤ l
2

∧ |rz| ≤ l
2

0 else

, ρSphere(~r, R) =

{

ρ0 for |~r| ≤ R

0 else

and τRound = 1− 2R/l − 1√
3− 1

: 0 ≤ τRound ≤ 1.

(1)

The Fourier transform here cannot be carried out analytically, and therefore has been cal-
culated numerically on a 3D grid.
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Figure S3: X-ray reflectometry on an ensemble of “nanocube” mesocrystals deposited on a
Si(001) substrate. Two insets show magnifications of the curve in two regions. The large
sharp peaks indexed in gray are from the substrate, the smaller and broader peaks indexed
in blue at small and large Qz are from the atomic lattice of the mesocrystals and the row of
peaks indexed in red are from the mesocrystal superstructure.

We note that the rounded cube model, like a model with flat truncations, is an ideal-
ization. Although the fit to the SAXS data (c.f. Fig. S1) is rather good, deviations from
this ideal shape by some of the nanoparticles are likely. In all the modeling done in this
paper, we have also assumed that the nanoparticles have a (Log-Normal) size distribution,
but the same rounding parameter τ , which could not yet be confirmed by experiment as the
influence on the radial integrated form factor is very subtle.

S2. XRR on ensemble of “nanocube” mesocrystals: Orien-

tation of the atomic lattice of individual nanoparticles

The ensemble of mesocrystals of rounded cubic nanoparticles grown on a Si(001) substrate
was characterized by x-ray reflectometry (XRR) using a Bruker AXS D8 reflectometer em-
ploying Cu Kα radiation. The reflected intensity is shown, in a logarithmic scale, as a
function of Qz in Fig. S3, with regions containing features further magnified in two insets.

The largest feature consists of a series of sharp peaks resulting from the Si (004) reflection
of the substrate. Visible here are the source characteristics, with discrete peaks resulting
from Cu Kα1,2 and Kβ as well as W Lα1,2 (The tungsten peak occur from the W separation
from the cathode and its spread on the anode). The intensity is clearly (note the logarithmic
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scale) dominated by the barely resolved Cu Kα1,2, weaker reflections can thus be treated as
resulting from Cu Kα radiation.

Clear, though weak and somewhat broad, peaks in the region of Qz up to about 0.3Å−1

can be indexed to the mesocrystal superlattice, in agreement with earlier investigations by
GISAXS1 and demonstrating that the c-direction of the mesocrystals is perpendicular to
the substrate. Note that pure (00L) reflections are completely unaffected by the random
in-plane orientation of the different mesocrystals of the ensemble.

At higher Qz, apart from the substrate peak, two further peaks are visible. These can
be indexed as the (004) and (008) reflections of the γ-Fe2O3 (Maghemite) atomic crystal
structure (Fd3m, No. 227) of the individual nanoparticles. For randomly oriented atomic
crystal structures, many additional peaks should be visible, some of which should have
significantly higher intensity. The presence of only these two reflections demonstrates that
the atomic lattice c direction coincides with the mesocrystal c direction, suggesting a strict
orientation of the atomic structure of the rounded nanocubes with regards to the cube faces.

S3. GISAXS on ensemble of “nanocube” mesocrystals:

Lattice constant deviation in an ensemble

The lattice constant distribution over an ensemble of mesocrystals with rounded cubes was
determined from the analysis of grazing incidence small angle X-ray scattering (GISAXS)
data.

The GISAXS measurement was carried out at the in-house high-brilliance grazing inci-
dence small angle X-ray scattering GISAXS/SAXS instrument GALAXI2 (λ = 1.34Å). The
measurement was performed at an incident angle of 0.4°. The structure was fabricated by
evaporation-induced self-assembly onto solid substrates (drop casting), which resulted in the
formation of ensembles of mesocrystals.3,4

The GISAXS data (Fig. S4 left) was processed using the software used and explained in
Josten et al.3 It allows the fitting of several peaks with a model incorporating a Gaussian
distribution of superlattice tilt angles (σtiltEnsemble

) leading to a tangential peak broadening,
lattice constants (a and c) determining peak positions, and a common (a and c) distribution
of lattice constants leading to a radial peak broadening (σlatticeEnsemble

). Furthermore the in-
plane and out-of-plane “GISAXS correlation lengths” ǫab and ǫc were determined (note that
ǫ reflects a combination of the exponential decay of correlations and of the finite size of the
mesocrystals; these contributions cannot be disentangled for an ensemble of mesocrystals).
The fixed peaks were selected based on their optimal signal strength to background ratio.
The structural analysis shows that the nanoparticle assemblies display the known1 body-
centered tetragonal structure. The peaks shapes are well described by the used model. Only
the peaks along the specular (Qy = 0) line differ from the measurement, as the physics of
these are not included in the model, but they are nevertheless sufficiently described for the
analysis performed here. Therefore only the peaks along the specular line are weighted by a
factor of 10 less compared to the other peaks. The full indexing of the peaks is shown on a
sample produced under similar conditions in a previous publication.4 The chosen peaks are
shown in Fig. S4 - Fit. The relevant results are shown in Tab.S1.
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Figure S4: GISAXS measurement of an ensemble of mesocrystals of rounded cube nanopar-
ticles (left) and fit with a model including a and c lattice constants, correlation length as
well as distributions of lattice constant and tilt angles.

Table S1: Summary of fit results from the GISAXS analysis of an ensemble of mesocrystals
of rounded cube nanoparticles.

aEnsemble [nm] cEnsemble [nm] ǫabEnsemble
[nm] ǫcEnsemble

[nm] σlatticeEnsemble
[%] σtiltEnsemble

[°]
14.7543(1) 21.575(2) 1145(1) 256.4(2) 2.037(1) 1.0989(4)

These values only come from the bct structure oriented in [001] direction. Very small
mesocrystals or mesocrystals with significantly worse crystallinity do not contribute signifi-
cantly to the Bragg Peaks as observed. The ensemble of mesocrystal observed with GISAXS
show an angular spread of about 1.1◦, which is a combination of single mesocrystal mosaicity
as well as tilting of complete superstructures with respect to the substrate surface normal.

S4. Sample preparation - mesocrystal extraction

The initial sample from which the individual mesocrystals are extracted, was produced as
described in the main text and in3,4 with optimized parameters to achieve a well ordered
structure. Individual single mesocrystals were isolated from the corresponding ensemble of
mesocrystals using a focused Ga ion beam (FIB) system in a dual beam FEI Helios NanoLab
400S.5 This system allows us to cut out the individual crystals with nanometer precision
without damaging the crystal structure. A detailed description of the separation process is
given and illustrated with some example images in Fig. S5.

First, a mesocrystal which has a certain size and is well separated from others is chosen
on the substrate (Fig. S5a). The highly ordered arrangement on top is proved by SEM (Fig.
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Figure S5: Extraction process of a single mesocrystal, which is described in the text. The
position of the mesocrystal is highlighted with a red circle. The red arrow in panel d marks
the tungsten manipulator needle.

S6b inset). The mesocrystal was first protected by deposition of a 300 nm thick platinum
(Pt) layer using an electron beam of 5 kV and 5.5 nA. Fig. S5b shows a mesocrystal covered
with Pt. This layer protects the mesocrystal from the ion beam, which will be used for the
extraction process of the chosen mesocrystal. Other mesocrystals around will be destroyed
through the extraction process.

For the extraction process, two trenches arround the chosen crystal are cut free using an
ion beam of 30 kV and 6.5 nA (Fig. S5c). Thereafter, one side block and the bottom area
under the sample are also cut free. The block remaining at the end including the sample has
to be large enough to allow the fixation with platinum at the tungsten manipulator needle
(marked with a red arrow in Fig. S5d). Further on, the last side block is cut free and the
mesocrystal is transferred to a standard Cu Omniprobe grid sample holder (Figs. S6a ,S5d).
The mesocrystal is positioned on top of a finger of the grid, so that a free beam path for the
X-rays were possible (Fig. S5e). The orientation of the mesocrystal is chosen so that the c-
axis of the mesocrystal superstructure is oriented parallel to the grid finger. The block is
fixed with platinum (ion beam 30 kV and 93 pA) to the Omnigrid grid (see the stripes of
Pt at the backside in Fig. S5e). After loosening the needle, the mesocrystal is cut freely on
the sides and cleaned using a low ion beam of 30 kV and 93 pA. During this process, images
are taken continuously and Fig. S5f shows an intermediate step in the free cutting process.
The resulting isolated single mesocrystals were then ready for structural characterization in
a defined orientation and geometry (Fig. S6b).
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Figure S6: (a) SEM picture of a part of the Cu Omniprobe grid, which is a typical TEM
lift-out grid. The inset displays a zoom of the central pin on which a free-cut part of the
silicon substrate with a mesocrystal on top is attached. (b) SEM picture of the investigated
single mesocrystal of cubic nanoparticles grown on a Si substrate, with a Pt cover layer, after
being cut free with a focused ion beam. The inset shows the regular cubic arrangement of
the nanoparticles taken before the Pt deposition

S5. Single meso-crystal diffraction: Alignment procedures,

mapping of reciprocal space planes and rocking curves

S5.1 Alignment

The alignment of the mesocrystal has to take into account both rotation (the orientation
of the mesocrystal) and translation (having the small mesocrystal centered in the focused
beam), which was facilitated by mounting the omniprobe grid (c.f. Fig. S6a), containing the
mesocrystals, on a small goniometer. The alignment started by locating the approximate
position of the cut Si substrate optically, making use of the Cu omniprobe grid. The top of
the Cu pin containing the sample was then pinpointed by measuring the beam attenuation
using a NaJ point detector. We then switched to a Roper Scientific area detector and located
the (004) reflection of the Si substrate (2θ ∼ 43◦), scanning ω and translations.

The Si (004) reflection was then used to adjust the goniometer angles and translations
such that the Si [001] direction (which also corresponds to the mesocrystal [001] direction)
coincided with the ϕ-axis (see Fig. 2a for the definitions of the diffractometer angles) and the
substrate was in the center of rotation of the diffractometer. The detector was then driven to
zero angle, with the detector area covering angles up to about 3◦, a beamstop added, and the
reflections of the mesocrystal were located, first the (00L) reflections that are independent
of ϕ, then additional reflections. The goniometer settings were then fine-tuned in order to
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maximize the intensities of the mesocrystal reflections.
The beam focus (5µm× 10µm) was smaller than the sphere of confusion of the diffrac-

tometer, i.e. the spread of the center of rotation of different diffractometer axes, which in this
case has a diameter of about 15µm.6 Therefore, after large changes of ϕ and particularly χ,
the mesocrystal (0.196µm × 4.5µm) needed to be recentered in the beam, which was done
by translations of the diffractometer table, maximizing reflection intensities.

S5.2 Mapping of reciprocal space planes

With the mesocrystal aligned as described in Sec. S5.1, all reciprocal space planes containing
reflections can be selected by a simple ϕ rotation. For the large unit cell of the mesocrystals
and the wavelength of 1Å, the Ewald sphere is rather flat (similar as with e.g. 100 keV x-
rays and typical atomic (small molecule) crystals), implying that often many reflections of
the selected reciprocal space plane are excited. Nevertheless, the reflections are not all in
optimal reflection condition, and to get the contribution of all the reflections of the plane
that are in range, it is necessary to rock the crystal both vertically (in ω) and horizontally (in
ϕ) around the optimal position (indicated by similar intensities left and right, and top and
bottom), adding the obtained intensities. This corresponds approximately to an integration
in Qx direction, though with a wider range further away from the origin (see Fig. 2a for the
definitions of the reciprocal space coordinate system for one plane as well as for the angles).

Figure S7: Sketch of the used meshes in ϕ and ω.

This was done by driving meshes as sketched in Fig. S7. ω was set in five discrete steps,
spanning a range of ±1◦ around the optimal position. For each ω position, ϕ was scanned in
the range of ±3.5◦ with 70 steps taking 1 minute, during which the detector was continuously
exposed. The resulting five detector images, already naturally integrated in ϕ, were then
added together, providing integration in ω.

All received reciprocal space maps, for a mesocrystal of cubic nanoparticles, are shown in
Fig. S8, except the (h0l) plane which is shown in Fig. 2 of the paper. The reciprocal space
maps were used for the determination of reflection widths and the analysis of the various
contributions to the broadening of reflections (see Sec. S6). However, this procedure is not
optimally suited to obtain reliable intensities. Intensities used for the structural refinement
were instead collected by ω rocking scans as detailed below.
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Figure S8: Scattering patterns of all reciprocal lattice planes with indexed Bragg reflections
to determine the crystal structure, apart from the (h0l) plane which is shown in Fig. 2b:
a) (h-hl) plane b) (h3h0) plane c) (hh0) plane d) (h2h0) plane

S5.3 Rocking curves and integrated intensities

In order to obtain 3D integrated intensities for structural refinement, rocking scans were
performed. First, all reciprocal space planes reachable by rotating ϕ (see Fig. 2a for the
angle definitions) were subsequently selected. Then, for each reflection in that plane, the
reflection was brought into vertical position by adjusting the χ angle if necessary (i.e. for non-
00L reflections). Despite of the high precision of the diffractometer, after each change of χ the
sample table has to be shifted in y and z directions to optimize the sample illumination, the
main source of the relatively large spread of intensities of different observations of equivalent
reflections (see Fig. S10b). Detector images were then taken as a function of ω over a region
of ∼ ±3◦.

For each ω position and reflection two rectangular regions around the reflection are defined
as shown in Fig. S9. The outer region (excluding the inner region) is used to estimate the
background contribution. A 2d parabula function is fit to the background region and then
subtracted from the data. The inner rectangle is then summed up to get the intensity.

This results in rocking curves of detector-integrated intensity vs ω, a few examples of
which are shown in Fig. S10. The rocking curves are then integrated numerical using the
trapezoidal rule to give the overall integrated intensity of one peak. As the proper in-
tegrated intensity is defined in terms of integration in reciprocal space (rather than de-
tector and rocking angle), the obtained intensity is then corrected by a Lorentz-factor
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Figure S9: Definition of the regions for the integration and background determination for
reflections on the detector.

L ∝ 1/(sin θ cos θ) ∼ 1/ sin θ. Note that no polarization factor correction is necessary be-
cause cos 2θ ∼ 1 for the small scattering angles used here.

Given that we have planes aligned prior to rocking, a single rocking scan will give detector-
integrated intensity vs ω curves for several reflections, including reflections that are not
aligned vertically. The latter reflections can be used as well, with the appropriately modified
Lorentz-factor 1/(sin θ cosψ), where ψ is the angle between the reflection and the vertical
direction. Overall, the procedure leads to many observations of the same reflections with dif-
ferent azimuths: we used 74 observations (see table S2) for 9 reachable (moving the detector
would in principle allow to reach more reflections, but the intensity falls very quickly with
Q, making their collection not feasible) unique reflections, corresponding to a redundancy of
8.2. The internal R value7

Rint =

∑

HKL

∑

i

∣

∣

∣
Ii(HKL)− I(HKL)

∣

∣

∣

∑

HKL

∑

i |Ii(HKL)|
= 0.26 (2)

is quite high compared to typical x-ray diffraction datasets from small-molecule crystal-
lography, which we attribute to the small size of sample and beam focus relative to the
diffractometer sphere of confusion (c.f. Sec. S5.1).

One potential reason for large Rint values is absorption. In our case, however, the small-
ness of the sample renders any absorption correction very small. Taking into account the
Maghemite crystal structure and density of the nanoparticles and their volume fraction of
about 63%, we obtain an attenuation length of about 49µm, which for the direct beam
going through the middle of the sample leads to an attenuation of just 9.6% (through the
Si pin below the sample the attenuation is even less, about 3%). Furthermore, given the
small scattering angles of below 3◦, the contributing beam paths through the sample will
be rather similar, which should lead to variations between different observations associated
with absorption that are far below 1%. As can be seen in table S2 and in Fig. S10b, experi-
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Table S2: Integrated intensities of the reflexes used from mesocrystal with rounded cubic
particles.

plane (hkl) χ [ °] IL [a.u.] (hkl) χ [ °] IL [a.u.]
(h0l) (002) 0 3.487474 (00-2) 0 4.417417

38 1.164279 38 0.641937
38 3.622978 38 2.885802

(004) 0 1.005613 (00-4) 0 1.556463
(10-1) 49 15.478618 (101) 49 10.009986

90 25.605288 7 20.418253
83 25.703287 0 24.252295

(-10-1) 49 8.949295 (-101) 7 18.577848
90 13.846430 0 21.747679
83 22.967346 49 13.498137

(200) 90 6.980267 (-200) 90 4.685243
48 2.934401 48 0.260197
48 7.982461 48 6.563991

(-202) 49 0.041254 (20-2) 49 0.137136
(202) 49 0.030219 (-20-2) 49 -0.242451

(hhl) (002) 0 3.218481 (00-2) 0 2.946105
52 2.442972 52 1.214388
52 2.142512 52 3.271747

(004) 0 1.494645 (00-4) 0 1.068915
(110) 90 18.675230 (-1-10) 90 17.953444

37 12.848164 37 11.278361
37 13.273435 37 11.700269

(112) 39 4.309290 (-1-1-2) 39 2.814963
0 4.480233 77 4.639545
13 4.176178 90 3.868875

(11-2) 39 4.221046 (-1-12) 39 4.980977
77 4.403585 0 6.058261
90 4.684094 13 3.492749

(220) 90 1.194695 (-2-20) 90 -0.261204
(h2hl) (002) 0 4.353100 (00-2) 0 5.291287

70 1.936964 70 1.402490
70 1.399625 70 2.002487

(004) 0 1.485221 (00-4) 0 1.112317
(121) 68 1.869076 (-1-2-1) 68 1.481820

0 3.255261 43 3.034235
(12-1) 68 2.721400 (-1-21) 68 2.503764

43 3.043836 0 2.937242
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Figure S10: Rocking scans and integrated intensities on the mesocrystal of rounded
nanocubes. (a) Rocking curves (measured data thick lines) for various (00L) reflections,
obtained by scanning ω with the sample aligned as for the measurement in Fig. 2a. Under
these conditions, the rocking scan corresponds to a scan through the reflection along b∗,
as sketched as inset. (b) Integrated intensities for different reflections in to show the large
spread of the intensities.

mentally observed variations are much higher than 10%. Absorption issues therefore have a
very minor, if not negligible, impact on the data set, and consequently we did not carry out
an absorption correction.

S6. Single meso-crystal diffraction: Analysis of Bragg-

peak shapes from reciprocal space planes

To extract structural information about the mesocrystals consisting of cubic particles we
have analyzed the peak shapes by extracting horizontal and vertical peak widths from the
images of all measured scattering planes. In addition to the experimental resolution, the
peak widths are determined by crystal structure parameters, namely the correlation lengths,
finite size effects, lattice constant distributions and mosaicity. The individual contributions
are sketched in Fig. S11.

S6.1 Extraction of peak widths

To extract the two standard deviation parameters for each Bragg-peak a 2D Gaussian profile
[Eqn. (3)] was fitted to the dataset using the Levenberg-Marquard algorithm. The refined
parameters where the peak positions (Qy0/Qz0), standard deviations (σQy/σQz), scaling (A)
and background (C).

I(Qy, Qz) = A · e
− 1

2

(

(Qy−Qy0)
2

σ2
Qy

+
(Qz−Qz0)

2

σ2
Qz

)

+ C (3)

The refinement area was a quadratic region of ±3 · 10−3Å−1 in Qy and Qz around the
peak position.

13



Figure S11: Schematic illustration of different sources of reflection broadening. (a) Finite
sample size and correlation length, in- and out-of-plane. (b) Strain, i.e. distribution of a and
c lattice constants. (c) Mosaicity (distributions of tilts), i.e. rotation of different crystallites
around ϕ or χ axes.

S6.2 Refinement of components to standard deviations

The different components that contribute to the peak shape contribute differently for each
reflection in dependence of its Qy and Qz position.

Tilt distribution/mosaicity Only the mosaicity around the Qx direction contributes to
the peak shape on the 2D detector. This contribution is a broadening around the
tangential direction with a fixed angular size, therefore it scales with the length of
the (Qy, Qz) vector. The components of this broadening are the projections of this
tangential broadening onto the Qy or Qz axis. It follows that: σm|y = σm cosχ = CmQz

and σm|z = σm sinχa = CmQy where the scaling constant can be described in terms of
mosaic angular spread as Cm = tan σχa. In the further course of the manuscript, σχa

is referred to as σtilt.

Correlation/finite size Crystallite domain size or finite size is the limitation of the coher-
ent scattering volume in a given direction. This is a general property of the crystal
system that equally effects each Bragg-peak and is thus a constant component for the
peak shape uniform for all reflections (σy and σz as used later on include also uniform
instrumental contributions).

Lattice parameter distribution If different crystal domains show a variation in lattice
parameter their peak positions will shift by the same fraction, thus leading to a peak
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broadening that scales with that reciprocal space component for the reflection: σσa|y =
σa · Qy and σσc|z = σc · Qz. For the analysis used, the values for both directions (σa
and σc) were coupled and designated as σlattice.

Instrumental resolution The measurement resolution is also a constant contribution that
is given by the beam divergence and distance of the detector as well as intrinsic detector
resolution (The resolution based on the energy uncertainty is negligible). For the
different directions we estimate the following values: resolution (FWHM) in y (or
rather a, in-plane) direction is 1.5(3) · 10−3 Å−1 and the resolution for the out-of-plane
direction (z or c-direction) is 0.5(1) · 10−3 Å−1.

The measured peak is a convolution of all of these effects. Assuming for simplicity a
Gaussian shape function for each component the resulting peak shape should again be a
Gaussian with a variance that is the sum of all contributing variances. We can therefore
describe the two standard deviations extracted from each peak as:

σQy =
√

σ2
y + σ2

σa|y + σ2

m|y =
√

σ2
y + (Qy · σa)2 + (Qz · tan σχa)2 (4)

σQz =
√

σ2
z + σ2

σc|z + σ2

m|z =
√

σ2
z + (Qz · σc)2 + (Qy · tan σχa)2 (5)

S6.3 Error estimation

We have found a considerable spread in the standard variation values when comparing the
values of symmetry equivalent reflections. This is likely due to the structured background
from various scattering effects that influence the fits. For this reason the errors on the fit
parameters cannot be extracted from the individual peak refinements directly.

To still get a sensible estimate of the refinement of the structural parameters from equa-
tions (4) and (5) we have assumed that the horizontal and vertical components in one
scattering plane have equal errors, a correct refinement should yield a χ2/DOF = 1 and
performed the refinement to the standard deviation as follows:

1. Refine equations (4) and (5) to the extracted standard deviations without error bars.

2. Use the refined parameters to calculate χ2 values for the horizontal and vertical com-

ponents and define the errors as σ0σQy/Qz =

√

2χ2
y/z

DOF
to get a good estimate of the

relative error of the two directions.

3. Repeat refinement with error bars, due to the different weighting small changes (a few
%) of the resulting parameters were found.

4. Re-normalize the error bars to the new refinement as σσQy/Qz = σ0σQy/Qz

√

χ2/DOF

5. Repeat refinement with new error bars (same results but yielding χ2/DOF = 1) and
extract the parameter errors from that refinement.

With this procedure we could extract the structural parameters for the mesocrystal for
each individual scattering plane that was measured. The peak standard deviations with their
errors were than combined from all scattering planes to refine an average set of structure
parameters that is reported in the main article.
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S6.4 Fit results

An example of the parameter refinement for all peaks is shown in Fig. S12 with individual
Bragg-peak results indexed according to the absolute value of H/L (Qy) or L/H (Qz). The
indicated error-bars are the estimated values according to section S6.3.

Figure S12: Fit results to the complete set of scattering plane peak standard deviations

The fit parameters comprise of in- and out-of-plane uniform parts (Correlation/finite size,
but also including instrumental broadening/resolution), lattice parameter distribution, and
tilt distribution, as detailed in Sec. S6.2 above. The obtained values are summarized in the
table below:

Table S3: Summary of fit results from the peak shape analysis.

σyMeso
[Å−1] σzMeso

[Å−1] σlatticeMeso
[%] σtiltMeso

[°]
5.3(2) · 10−4 1.53(2) · 10−3 0.42(2) 0.09(2)

S6.5 Constant parts of the broadening: finite size and correlations

For the uniform parts of the broadening (σy and σz in table S3), there can be three distinct
contributions (c.f. Sec. S6.2): i) instrumental, ii) finite-size effects, and iii) finite correlation
length. The last, assuming exponentially decaying correlations, leads to a Lorentzian peak-
shape and the sample finite size leads to a broadening described by the Laue-function with
a shape that is closer to Lorentzian than to Gaussian, while the shape of the instrumental
contribution may be close to rectangular. The overall uniform part of the broadening is
the convolution of these three contributions. Although the fit done in Sec. S6.4 assumed
Gaussian line-shapes, for trying to disentangle the different contributions i) to iii) here, we
remove this assumption, and instead of the standard deviations consider the full-widths at
half maximum (FWHM), which is given by FWHMexp,a/c = 2

√
2 ln 2 · σy/z. The in-plane
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overall uniform broadening FWHMexp,a = 1.25(5) · 10−3 Å−1 is already fully accounted for
by the instrumental contribution FWHMi,a = 1.5(3) · 10−3 Å−1 and thus neither finite-size
effects nor effects from finite correlations are discernible.

This is not the case for out-of-plane, where the instrumental contribution FWHMi,c =
0.5(1)·10−3 Å−1 is much smaller than the overall uniform broadening FWHMexp,c = 3.60(5)·
10−3 Å−1. Deconvolution of the instrumental contribution depends on its line-shape (FWHM
of two Lorentzians add linearly, whereas the FWHM of a Lorentzian and a rectangular
function add quadratically). Considering shapes in between those extremes and the error
bars, the deconvoluted FWHMii+iii,c should be in the range of ∼ 2.95−3.63 ·10−3 Å−1 (with
a Lorentzian shape).

From SEM and according to the spacing of the Laue oscillations (NL = 13) and lattice
parameter c, the thickness of the mesocrystal is Dc = 196(1) nm. The corresponding FWHM
of the Laue function is

FWHMii,c =
0.89 · 2π
Dc

= 2.85(2) · 10−3 Å
−1
. (6)

This is certainly the dominant contribution to FWHMexp,c, not unexpected given the clear
observation of the Laue oscillations in Fig. 2b. A possible contribution of finite correlations
broadening FWHMiii,c ∼ 0.08−0.8 ·10−3 Å−1 remains, which would correspond to a correla-
tion length in the range ξc ∼ 0.25− 2.5µm. However, the approximation made in fitting the
overall widths as Gaussians leads to additional uncertainty that disproportionately affects a
small rest-contribution such as FWHMiii,c here. Therefore, we refrain from stating a range
for ξc in the main text. Clear is, however, that the c correlation length is much larger than
the sample thickness.

S7. Single meso-crystal diffraction: Structural analysis

The 9 corrected and merged integrated intensities (see Sec. S6.3) were modeled using an
isotropic Debye-Waller factor and the structure factor of the mesocrystal unit cell, consisting
of two particles with their edges aligned (see main text) to the unit cell axes. The body-
centered structure implies the reflection condition H+K+L even, which was fulfilled for all
experimentally observed reflections. The anisotropic form factor used for the particles was
the Fourier transform of a rounded cube, as described in Sec. S1.2. The size distribution of
the nanoparticles was taken into account by convolution with a lognormal distribution. This
modeling corresponds to the “local monodisperse approximation” used in SAXS analysis8

and neglects effects on the interference. This is reasonable, since a local size variation would
merely lead to diffuse scattering and a corresponding decrease of the intensity of the Bragg
peaks analogous to the effects of random displacements. Thus any such effect is included by
fitting a Debye-Waller factor. Including a common scale factor I0, the overall model can be
described as

IHKL = I0·
∫ ∞

−∞

1

l′
e
−

(

ln l′−ln

(

l/
√

1+σ2
l
/l2

))2

2 ln(1+σ2
l
/l2) F {ρR−Cubes(~r, l

′, τ)}
(

~QHKL

)

dl′ ·e− 1
3
a2DW ·Q2

HKL , (7)
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for H +K + L even and contains 5 fit parameters. Refinements of the intensities was done
using a standard error-weighted least-squares refinement with the mpfit implementation of
the Levenberg-Marquard algorithm. For the rounded cubes form factor a numeric integra-
tion of the particle density was used. Different integration grid sizes (253, 503, 1003) were
calculated which all yielded indistinguishable fit results and intensities.

Table S4: Comparison of the merged measured intensities of unique mesocrystal reflections
and the calculated intensities of the optimized model.

Reflection Measured Intensity Modelled Intensity
(1 0 1) 1.843(569) · 105 1.989 · 105
(1 1 0) 1.429(293) · 105 1.018 · 105
(0 0 2) 2.658(1251) · 104 3.884 · 104
(2 0 0) 4.901(2647) · 104 9.605 · 104
(1 1 2) 4.344(758) · 104 1.911 · 104
(1 2 1) 2.606(585) · 104 1.647 · 104
(2 0 2) −0.085(1413) · 103 4.217 · 103
(2 2 0) 4.667(7279) · 103 0.375 · 103
(0 0 4) 1.287(228) · 104 1.206 · 104

Given the relatively small observations to parameter ratio, the cube rounding parameter
τ was fixed at several values. We have found that χ2 did not increase much for τ in the range
0.7−0.9 and that most of the fitted parameters did not change significantly either: a clear cor-
relation with τ was found only for the Debye-Waller factor aDW . The final fit was performed
with τ fixed to 0.8, the value obtained from SAXS (see Sec. S1). Table S4 lists the observed
and calculated intensities, with the errors in the observed intensities obtained from the stan-
dard deviation of the different observations of each of the symmetry-unique reflections (c.f.
table S2). The corresponding reduced χ2 value of 5.8 is relatively high, suggesting that the
model may be too simple (e.g. the assumption of no variation of τ) to fully describe the
data. From the table we can also determine for comparison the standard crystallographic
R-values:7 R1 =

∑

||Fo| − |Fc||/
∑

|Fo| = 0.23, wR2 =
√

∑

w(Io − Ic)2/
∑

wI2o = 0.47.
These residuals are in the range of typical R values observed for complex macromolecules
and much higher than usual for small molecules. However, they have to be expected given
the also high Rint = 0.26 (c.f. Sec. S6.3) and the relatively simple model used, which e.g.
doesn’t allow for any shape-variations between the different nanoparticles of the mesocrystal.

The optimal model parameters are listed in table 1 in the main text. The refinement
errors for the resulting parameters were non-trust worthy (e.g. error on the size distribution
far bigger than 100% size variation), which we attribute to the numerical form factor that was
used. Instead we used a manual estimation of errors which lead to a larger than 5% increase
in χ2. These estimated errors compared well to the fit error for intensity and edge length
if only these two parameters where refined, parameters that did not change the numerical
integration and thus behaved normally.

The small value of the average displacement suggests that the nanoparticle positions are
well fixed by their neighbors, as may be expected (Fig. 2d). The particle size distribution of
0.0(26)% is unfortunately limited in quality by the data but is consistent with the distribution
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of lattice parameters (σaMeso
and σcMeso

in table S3), which is as expected: larger particles
lead to larger lattice constants.
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