Supporting Information

Inter-Overlapped MoS₂/C composites with Large-Interlayer-Spacing for High-Performance Sodium-Ion Batteries

Yinghui Wang,^a Ya Yang,^a Deyang Zhang,^{a*} Yangbo Wang,^a Xiaoke Luo,^c Xianming Liu,^d Jang-Kyo Kim^e and Yongsong Luo^{a,b*}

^a Key Laboratory of Microelectronics and Energy of Henan Province, Henan Joint International Research Laboratory of New Energy Storage Technology, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.

^b College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China.

^c School of Information Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.

^d College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China.

^e Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China.

[®] Corresponding author. Tel./fax: +86 376 6390801, E-mail: ysluo@xynu.edu.cn (Y. S. Luo), zdy@xynu.edu.cn.

Fig. S1 (a) TEM image of the CNT@NCT. (b, c) SEM and TEM image of the CNT@NCT@MoS2.

Fig. S2 Raman spectra of the MoS_2 and $W-MoS_2/C$.

Fig. S3 (a) XPS survey spectrum of the CNT@NCT@W-MoS₂/C. (b-d) High-resolution XPS spectra of the C 1s peak, N 1s peak, and Mo 3d peak in the CNT@NCT@W-MoS₂/C.

Table. S1 Elemental cor	npositions of (CNT@NCT($@W-MoS_2/0$	C composites
-------------------------	-----------------	----------	--------------	--------------

Element	С	N	S	Мо
CNT@NCT@W-MoS ₂ /C	79%	3.3%	11.6%	6.1%

Fig. S4 TG curves of the MoS_2 and $W-MoS_2/C$.

The MoS₂ content in the CNT@NCT@W-MoS₂/C, W-MoS₂/C and pure MoS₂ was obtained by heating in oxygen atmosphere from room temperature to 700 °C. First, according to Fig. S4, it can be seen that MoS₂ starts to change to MoO₃ at around 370 °C, the mass ratio of MoS₂ in W-MoS₂/C can be calculated using Equation (1). And the ratio of PVP-C to MoS₂ in W-MoS₂/C is 1:3.2.

$$MoS_{2}(wt\%) = \frac{Molecular\ mass\ of\ MoS_{2}}{Molecular\ mass\ of\ MoO_{3}} \times\ total\ residual\ weights \times 100\ \%$$
(1)

According to the TG curve of the CNT@NCT@W-MoS₂/C (Fig. 3d), it showed a major weight loss at between 270 °C and 600 °C, during which, the carbon component was completely removed by O_2 oxidation and MoS_2 was oxidized completely to MoO_3 . Known by Equation (1), the MoS_2 , PVP-C and CNT@NCT content is 42.89 %, 13.27 %, and 43.84 %, respectively.

Fig. S5 Typical CV curves of the CNT@NCT@W-MoS₂/C cathode.

Fig. S6 (a, b) SEM images of CNT@NCT@W-MoS₂/C electrode after 200 cycles at 1 A g⁻¹.

Samples	Current	Cycle	Maintained	Reference
•	density /mA g ⁻¹	number /n	capacity /mA h g ⁻¹	
MoS_2 - $Li_4Ti_5O_{12}$	1200	200	101	1
MoS ₂ nanosheets	320	100	251	2
MoS ₂ /carbon fibers	1000	100	181	3
PEO-MoS ₂ composites	670	70	150	4
MoS ₂ /rGO composites	50	100	203	5
$60 MoS_2$	25	20	218	6
MoS ₂ /Graphene composites	320	300	227	7
MoS_2 nanowires	100	200	200	8
$Mo(Se_{0.85}S_{0.15})_2$:CNT	2000	100	40	9
$G-C@MoS_2$	100	100	155	10
CNT@NCT@MoS ₂ /C	1000	136	90	Control sample
CNT@NCT@W-MoS ₂ /C	1000	200	256	This work

Table S2. A comparison of the rate capability between this work and the work previously reported in literature.

Fig. S7 (a) Optimized adsorption configurations of Na atom on the hollow, bridge, top

of S atom and top of Mo atom site on the MoS_2 layer. (b) Optimized adsorption configurations of Na atom on the hollow, bridge and top of C atom site on the graphene sheet.

Table S3. Calculate adsorption energies of Na atom at various active sites of $CNT@NCT@W-MoS_2/C$ and $CNT@NCT@MoS_2$.

	Active site	E _{ad} /eV
CNT@NCT@MoS ₂	Hollow	-0.734
	Bridge	5.476
	Top-S	8.479
	Тор-Мо	8.479
CNT@NCT@W-MoS ₂ /C	Hollow	-0.971
	Bridge	-0.999

Top-C	-0.937

References

- 1 G.B. Xu, L.W. Yang, X.L. Wei, J.W. Ding, P.K. Chu, *Adv. Funct. Mater.*, 2016, **26**, 3349–3358.
- 2 D.W. Su, S.X. Dou, G.X. Wang, *Adv. Energy Mater.*, 2014, **5**, 1401205.
- 3 Y.Q. Zhang, H.C. Tao, T. Li, S.L. Du, J.H. Li, Y.K. Zhang, X.L. Yang, *ACS Appl. Mater. Interfaces*, 2018, **10**, 35206-35215.
- 4 Y. Li, Y. Liang, F.C. Robles Hernandez, H. Deog Yoo, Q. An, Y. Yao, *Nano Energy*, 2015, **15**, 453-461.
- 5 T.S. Sahu, S. Mitra, *Sci. Rep.*, 2015, **5**, 12571.
- 6 L. David, R. Bhandavat, G. Singh, *ACS Nano*, 2014, **8**, 1759-1770.
- 7 X. Xie, Z. Ao, D. Su, J. Zhang, G. Wang, Adv. Funct. Mater., 2015, 25, 1393-1403.
- 8 W. Ye, F. Wu, N. Shi, H. Zhou, S. Xiong, Small, 2020, 16, 1906607..
- 9 Z.T. Shi, W. Kang, J. Xu, L.L. Sun, C.S. Lee, *Small*, 2015, **11**, 5667-5674.
- 10 H.M. Zhou, P.F. Lv, X.M. Lu, X.B. Hou, Q.F. Wei, *ChemSusChem*, 2019, **12**.