

Supplementary Information

Figure S1. Atomic configurations and plane averaged electrostatic potential of graphene/QL-In₂Se₃/Ru(0001) heterostructure. (a) and (b): Relaxed configurations of a graphene/QL-In₂Se₃/Ru(0001) heterostructure in the two opposite polarizations. The black, purple, green and gray balls represent C, In, Se and Ru atoms, respectively. (c) and (d): Plane-averaged electrostatic potential of (a) and (b), respectively. The horizontal dashed lines represent the Fermi energy (E_F).

Figure S2. Configuration and plane-averaged electrostatic potential of graphene/1QL-In₂Se₃/Au(111) heterostructure. (a) Relaxed configuration of graphene/1QL-In₂Se₃/Au(111) heterostructure. The distance between the bottom surface of In₂Se₃ and Au is 2.59 Å, which is larger than the typical Au-Se bond length, 2.43~2.48 Å, indicating 1QL-In₂Se₃ is weakly bonded to the Au substrate. (b) Plane-averaged electrostatic potential of (a). The horizontal dashed lines represent the Fermi energy (E_F).

Figure S3. Configurations of bulk Al_2O_3 and freestanding Al_2O_3 layer shown in Table 1. (a) Configurations of α -Al₂O₃ and layered bulk Al₂O₃ comprising QL-Al₂O₃ layers. (b) Configurations of various freestanding Al_2O_3 layers.

Figure S4. Electronic structures of freestanding QL-Y₂O₃. (a),(b): Top and side views of two phases of freestanding QL-Y₂O₃. O atoms are stacked in A-B and A-B-C sequence in FE-ZB' and FE-WZ' respectively. (c),(d): PBE-calculated band structure and DOS of freestanding QL-Y₂O₃ in FE-ZB' and FE-WZ' phase, respectively.

Figure S5. Dynamic stability of QL-M₂O₃ (M=Al, Y). (a), (b) Phonon dispersions of QL-Al₂O₃ in the FE-ZB' phase and FE-WZ' phase respectively. The structures have no imaginary-frequency modes. (c), (d) Phonon dispersions of QL-Y₂O₃ in the FE-ZB' phase and FE-WZ' phase respectively. The structures have no imaginary-frequency modes.

Figure S6. Atomic configurations and plane averaged electrostatic potential of graphene/QL-Y₂O₃/Ru(0001) heterostructure. (a) and (b): Relaxed configurations of graphene/QL-Y₂O₃/Ru(0001) heterostructure with opposite polarizations.. The black, dark green, red, and gray balls represent C, Y, O and Ru atoms respectively. (c) and (d): Plane-averaged electrostatic potential of (a), (b) respectively. The horizontal and sloped dashed lines represent the Fermi energy (E_F) and potential drop across QL-Y₂O₃, respectively. The inset in (d) shows a zoom-in of the potential barrier.

Unlike the case of graphene/QL-Al₂O₃/Ru(0001), in the Y₂O₃ heterostructure the graphene ripples by a very small amount, only 0.12 Å. We have performed calculations using larger, 6 × 6 supercells and the results were essentially unchanged, confirming the smaller ripple.

Figure S7. Layer-resolved PDOS and plane-averaged electron density difference of a graphene/QL-Y₂O₃/Ru(0001) heterostructure. (a) and (b): The layer-resolved PDOS of graphene/QL-Y₂O₃/Ru(0001) heterostructures when the polarization points toward and away from graphene, respectively. The tunnel barrier is presented by the yellow region. The Fermi energy is located 0.90 eV above and 0.67 eV below the Dirac point for n- and p-doped graphene. (c) and (d): The plane-averaged charge density difference of the heterostructure. The blue and red region represent electron accumulation and depletion respectively. The isosurface values are set at 0.008 $e/Å^3$.

Figure S8. Strain effect on the properties of graphene/QL-Al₂O₃/Ru heterostructure. (a): Relaxed configurations of the new Gr/QL-Al₂O₃/Ru heterostructure, in which QL-Al₂O₃ is unstrained, while graphene and Ru are compressed by 0.7% and stretched by 3.1%, respectively. Strain of Ru was calculated by using the experiment value of the Ru lattice constant. (b): Relaxed configurations of the Gr/QL-Al₂O₃/Ru heterostructure shown in the main text, in which graphene and QL-Al₂O₃ are compressed by 3.6% and 3.0%, respectively, and the lattice constant of Ru(0001) was set to the experimentally measured value. (c) and (d): Plane-averaged electrostatic potential of (a) and (b), respectively.