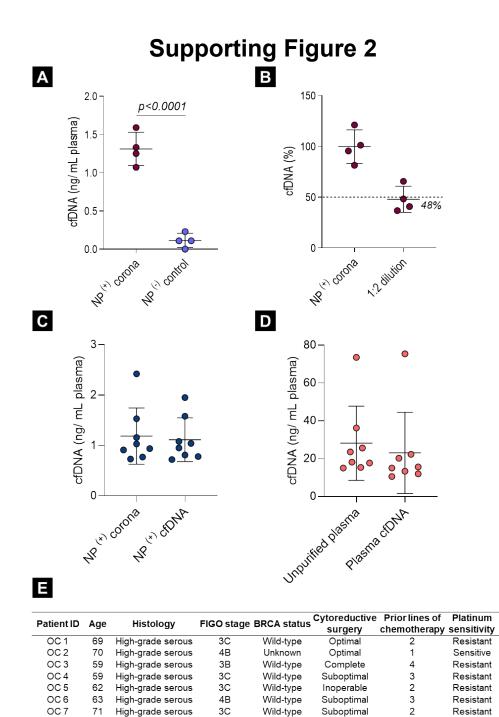

The Biomolecule Corona of Lipid Nanoparticles Contains Circulating Cell-free DNA

3 4 Lois Gardner^{1,2}, Jessica Warrington¹, Jane Rogan³, Dominic Rothwell², Ged Brady², 5 Caroline Dive², Kostas Kostarelos^{1, 4, 5}*, Marilena Hadjidemetriou^{1*} 6 ¹ Nanomedicine Lab, Faculty of Biology, Medicine and Health, AV Hill Building, The University of Manchester, 7 8 Manchester, United Kingdom 9 ² Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, 10 Manchester, United Kingdom 11 12 ³ Manchester Cancer Research Centre Biobank. The Christie NHS Foundation Trust, CRUK Manchester Institute, Manchester, United Kingdom 13 14 15 ⁴ Manchester Cancer Research Centre, The University of Manchester, 555 Wilmslow Road, Manchester 16 M20 4GJ, United Kingdom 17 18 ⁵ Catalan Institute of Nanoscience and Nanotechnology (ICN2), UAB Campus, Bellaterra, Barcelona, Spain. 19 20 21 22 23 24 25 26 * Correspondence should be addressed to 27 marilena.hadjidemetriou@manchester.ac.uk; kostas.kostarelos@manchester.ac.uk 28

Sample	Size (nm)	PDI	ζ-potential (mV)
Batch 1	138.3 ± 3.061	0.054 ± 0.028	-32 ± 0.651
Batch 2	127.8 ± 2.312	0.043 ± 0.003	-31.4 ± 0.929
Batch 3	134 ± 1.365	0.059 ± 0.007	-30.4 ± 0.503

Supporting Figure 1


- 32
- 33
- 34
- 35

36 **Figure S1:** Physiochemical characterisation of liposome nanoparticles (NPs). **A)** Graphs

37 representing the size (diameter in nm) and zeta-potential distribution (mV) of PEG:HSPC:CHOL

38 liposome batches 1-3. B) Table listing the mean average size (nm), polydispersity index (PDI) and

39 zeta-potential (mV) of each liposome batch including standard deviations.

41

40

42

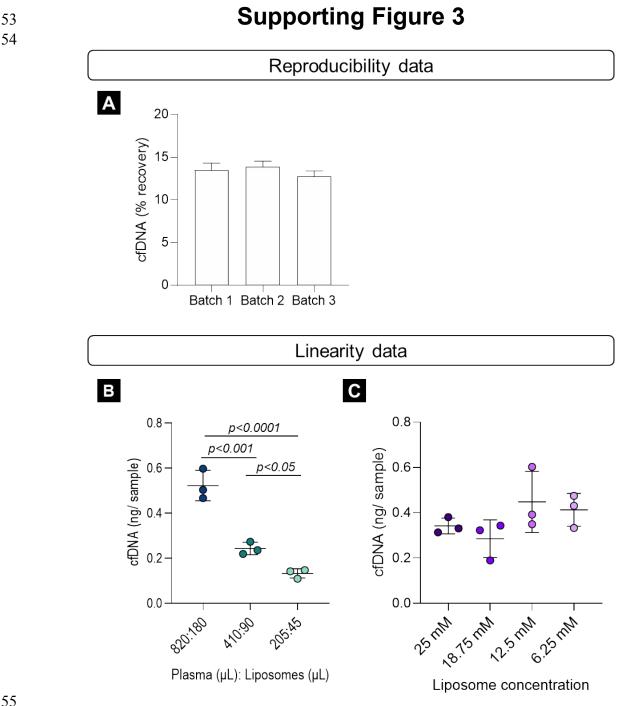
43 Figure S2: Assessing the accuracy of direct real-time PCR cfDNA quantification in ex vivo healthy and disease nanoparticle corona samples. A) RNase P real-time qPCR guantification of in pooled healthy 44 liposomal corona samples and liposome (-) plasma controls. B) Direct RNase P qPCR inhibition 45 determined using 2-fold dilution of pooled NP corona samples. C-D) LINE-1 real-time gPCR 46

Wild-type

Complete

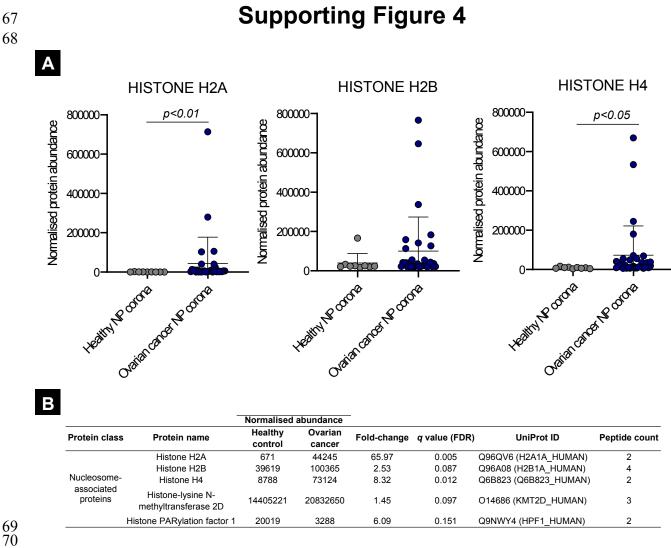
1

Sensitive


зc

- 47 quantification of cfDNA in late-stage serous ovarian cancer ex vivo biomolecule corona samples (n=8).
- 48 Graph C represents cfDNA in NP corona samples and NP corona purified cfDNA, whereas graph D
- 49 represents cfDNA in unpurified plasma (diluted 1:40) and purified plasma. All error bars represent mean
- 50 and standard deviation. Groups were compared using a student t-test was performed (adjusted p values <0.05 were considered significant). E) Clinical details of eight late-stage ovarian cancer plasma samples
- 51
- 52 included in graphs C and D.

OC 8


76

High-grade serous

- 55 56
- 57 Figure S3: Reproducibility & linearity experiments of healthy plasma NP corona samples. A)
- 58 Reproducibility data showing the percentage recovery (%) of QIAamp® purified NP corona cfDNA
- 59 across liposome NP batches relative to QIAamp extracted plasma cfDNA (100%). B-C) Linearity data to
- 60 investigate the effect of liposome concentration and plasma volume on cfDNA content in the liposome
- 61 biomolecule corona. B) Graph highlighting the effect of plasma volume on cfDNA concentration (ng
- 62 cfDNA/ sample). Standard protocol 820 µL plasma: 180 µL liposomes. C) Graph showing the effect of
- 63 liposome concentration on cfDNA concentration (ng cfDNA/ sample). 12.5 mM liposomes represent
- 64 standard protocol. All error bars represent mean and standard deviation. Three groups or more were
- 65 compared using a one-way analyses of variance (ANOVA) test followed by the Tukey's multiple
- 66 comparison test. Adjusted *p* values <0.05 were considered significant.

4

71

Figure S4: Histone proteins identified by LC-MS/MS in the biomolecule corona of healthy and ovarian cancer female plasma samples. A) LC-MS/MS normalised protein abundance of histones H2A, H2B and H4 in ovarian cancer corona samples and age-matched healthy corona controls. A one-way ANOVA was performed by the Progensis QI software with significance bars representing FDR-adjusted

76 p values. **B)** Table summarising the relative abundance of proteins identified by LC-MS/MS associated

77 with nucleosomes (DNA-histone complex) known to contain cfDNA. Max fold change between ovarian

78 cancer corona samples and healthy corona controls is provided with FDR-adjusted p value from a one-

79 way ANOVA in Progensis QI. Uniprot protein identifiers are provided along with LC-MS/MS peptide

80 counts.

Supporting Table 1

Q	2
0	J

	Ovarian cancer patients						
	Healthy	Stage 1	Stage 2	Stage 3	Stage 4		
Sample number	11	18	8	12	5		
Age-range (median)	40-59 (51)	21-87 (59)	32-77 (60)	37-74 (62)	36-67 (48)		
Histological subtype	N/A	Mucinous -11 (61%) Serous- 5 (28%) Clear cell-1 (5.5%) Endometroid- 1 (5.5%)	Serous- 6 (75%) Endometroid- 2 (25%)	Serous- 9 (75%) Adenocarcinoma (NOS)- 2 (17%) Carcinosarcoma- 1 (8%)	Serous- 5 (100%)		
Germline BRCA status	N/A	Positive- 0 (0%) Negative- 1 (5.5%) Unknown- 17 (94.5%)	Positive- 0 (0%) Negative- 3 (37.5%) Unknown- 5 (62.5%)	Positive- 1 (8%) Negative- 0 (0%) Unknown- 11 (92%)	Positive- 1 (20%) Negative- 3 (60%) Unknown- 1 (20%)		
Baseline CA125 (U/ mL)	N/A	Median 60 (12-550)	Median 29.5 (4-600)	Median 16 (7-358)	Median 15 (9-396		
Prior lines of chemotherapy	N/A	0 (94%) 2 (6%)	0 (62.5%) 1 (37.5%)	0 (50%) 1 (42%) 2 (8%)	0 (20%) 1 (80%)		
Platinum sensitivity	N/A	Sensitive- 6 (33%) Resistant- 1 (6%) Unknown- 11 (61%)	Sensitive- 3 (37.5%) Resistant- 1 (12.5%) Unknown- 4 (50%)	Sensitive- 1 (8%) Resistant- 0 (0%) Unknown- 11 (92%)	Sensitive- 2 (40% Resistant- 1 (20% Unknown- 2 (40%		

85

 Table S1: Table outlining clinical characteristics of ovarian cancer patient cohort and healthy normal

volunteers (HNVs). Details include sample number (n), age-range (years), histological subtype, germline BRCA mutation status, baseline CA125 concentration (U/ mL), prior lines of chemotherapy

and platinum sensitivity.