Supporting Information

Prediction of two-dimensional antiferromagnetic ferroelasticity in AgF₂ monolayer

Xilong Xu, Yandong Ma,* Ting Zhang, Chengan Lei, Baibiao Huang, and Ying Dai*

School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan 250100, China

*Corresponding author: yandong.ma@sdu.edu.cn (Y.M.); daiy60@sina.com (Y.D.)

Method	PBE	HSE06	PBE+U (3eV)
Band gap (eV)	0.31	2.87	1.23

Table S1. The band gaps of SL AgF_2 using different methods.

 Table S2. The cleavage energy with different methods.

Method	PBE+D3	PBE+D2	LDA	LDA+D3
	Vdw	Vdw		Vdw
c (Å)	5.73	5.56	5.45	5.36
cleavage energy (eV/Å ²)	36.2	42.8	41.3	52.5

*Vdw denotes Van der Waals correction.

Fig. S1. (a) Crystal structures of bulk AgF_2 from top and side views. (b) The band structures of bulk AgF_2 .

Fig. S2. The Jahn-Teller effect in bulk AgF_{2} .

Fig. S3. The phonon bands of bulk AgF₂.

Fig. S4. (a) The band structures and (b) the phonon bands of SL AgF_2 with lattice parameters of bulk AgF_2 .

Fig. S5. Electronic localization function (ELF) for AgF_2 monolayer.

Fig. S6. The MD of AgF_2 monolayer with oxygen (2 ps at 300 K).