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Detailed derivation of the vdW potential

Distance between interacting facets

The interacting facet of particle P2, denoted by F2, can be described as a plane passing
through three of its vertices v1 = [xv1, yv1, zv1], v2 = [xv2, yv2, zv2], and v3 = [xv3, yv3, zv3], as
shown in Fig. S1a. The normal vector n of the plane can be obtained by the cross product
of the two vectors L1 = v2 − v1 and L2 = v3 − v1 formed by the three points:

n = L1 × L2 = [nx, ny, nz] (1)

nx = (yv2 − yv1)(zv3 − zv1)− (zv2 − zv1)(yv3 − yv1)
ny = (zv2 − zv1)(xv3 − xv1)− (xv2 − xv1)(zv3 − zv1)
nz = (xv2 − xv1)(yv3 − yv1)− (yv2 − yv1)(xv3 − xv1).

The equation of plane for F2 is then given by

nx(x− xv1) + ny(y − yv1) + nz(z − zv1) = 0, (2)

where (x, y, z) represents the position of an arbitrary point on this plane. To obtain the
distance dx between the interacting facets of particles P1 and P2 in x axis, we note that:
(i) the center of mass of P1 is located at the origin and axis-aligned with the Cartesian
coordinate such that its interacting face points along the +x direction, and (ii) dx is defined
as the distance between the centers of the surface atoms of the interacting facets (Fig. S1b).
Given that the interacting facet of P1 is offset by a distance D/2 from the origin (half the
particle dimension along the x-axis) and the size of the atoms making of the particles is σ,
dx = x− D

2
+ σ, which, combined with Eq. 2, yields the final form of dx given by

dx = c1y + c2z + c3 (3)

where c1 = −ny/nx, c2 = −nz/nx, and c3 = xv1 −D/2 + σ − c1yv1 − c2zv1.

Figure S1: (a) Interacting facets of particles P1 (blue) and P2 (red). (b) x-y projection of
P1 and P2. The center of mass of P1 is at the origin.
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Analytical solutions to the energy integral

The energy integral for a given region r and given power-law component of the rod potential
with coefficient Cν and scaling exponent nν is given by

Uν,r
vdW = γCν

∫ yr,2

yr,1

∫ zr,2(y)

zr,1(y)

( σ

dr,x(y, z)

)nν
dz dy. (4)

Substituting Eq. 3 specific for region r along with its z-integral limits zr,1 = br,1y + ar,1 and
zr,2 = br,2y + ar,2 into Eq. 4, we obtain

Uν,r
vdW = γCνσ

nν

∫ yr,2

yr,1

∫ br,2y+ar,2

br,1y+ar,1

(cr,1y + cr,2z + cr,3)
−nν dz dy. (5)

Case 1. We first consider the most general case where dx is a function of y and z, i.e.,
cr,1 6= 0 and cr,2 6= 0. For this case, the solution to the inner integral with respect to z is
given by

Uν,r
vdW =

γCνσ
nν

cr,2(nν − 1)

∫ yr,2

yr,1

[ar,1cr,2 + cr,3 + (cr,1 + br,1cr,2)y]1−nν

− [ar,2cr,2 + cr,3 + (cr,1 + br,2cr,2)y]1−nν dy, (6)

The solution to this outer integral depends on the values of cr,1, cr,2, br,1, and br,2.

Case 1A. When cr,1 + br,1cr,2 6= 0 and cr,1 + br,2cr,2 6= 0, the solution is given by

Uν,r
vdW =

γCνσ
nν

cr,2(nν − 1)(nν − 2)

×
{[ar,1cr,2 + cr,3 + (cr,1 + br,1cr,2)yr,1

]2−nν − [ar,1cr,2 + cr,3 + (cr,1 + br,1cr,2)yr,2
]2−nν

(cr,1 + br,1cr,2)

+

[
ar,2cr,2 + cr,3 + (cr,1 + br,2cr,2)yr,2

]2−nν − [ar,2cr,2 + cr,3 + (cr,1 + br,2cr,2)yr,1
]2−nν

(cr,1 + br,2cr,2)

}
. (7)

This equation is equivalent to the solution to the dx ≡ dx(y, z) case provided in Table 1.

Case 1B. However, when cr,1 + br,1cr,2 = 0,

Uν,r
vdW =

γCνσ
nν

cr,2(nν − 1)(nν − 2)

{
(yr,2 − yr,1)(ar,1cr,2 + cr,3)

1−nν

+

[
ar,2cr,2 + cr,3 + (cr,1 + br,2cr,2)yr,2

]2−nν − [ar,2cr,2 + cr,3 + (cr,1 + br,2cr,2)yr,1
]2−nν

(cr,1 + br,2cr,2)

}
. (8)
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Case 1C. When cr,1 + br,2cr,2 = 0,

Uν,r
vdW =

γCνσ
nν

cr,2(nν − 1)(nν − 2)

{
(yr,1 − yr,2)(ar,2cr,2 + cr,3)

1−nν

+

[
ar,1cr,2 + cr,3 + (cr,1 + br,1cr,2)yr,1

]2−nν − [ar,1cr,2 + cr,3 + (cr,1 + br,1cr,2)yr,2
]2−nν

(cr,1 + br,1cr,2)

}
. (9)

Case 1D. Finally, when cr,1 + br,2cr,2 = cr,1 + br,1cr,2 = 0,

Uν,r
vdW =

γCνσ
nν

cr,2(nν − 1)(nν − 2)

×
{

(yr,2 − yr,1)(ar,1cr,2 + cr,3)
1−nν + (yr,1 − yr,2)(ar,2cr,2 + cr,3)

1−nν
}
. (10)

Case 2. The solution to the energy integral exhibits different forms when the distance
between the facets are not a function of both y and z. When cr,2 = 0 and dx = dx(y), the
integral reduces to

Uν,r
vdW = γCνσ

nν

∫ yr,2

yr,1

∫ br,2y+ar,2

br,1y+ar,1

(cr,1y + cr,3)
−nν dz dy

= γCνσ
nν

∫ yr,2

yr,1

(br,2y + ar,2 − br,1y − ar,1)(cr,1y + cr,3)
−nν dy (11)

with a solution given by

Uν,r
vdW =

γCνσ
nν

c2r,1(nν − 2)(nν − 1)

×
{

(cr,1yr,2 + cr,3)
1−nν

[
(ar,1 − ar,2)cr,1(nν − 2) + (br,1 − br,2)(cr,3 + cr,1(nν − 1)yr,2

]
−(cr,1yr,1 + cr,3)

1−nν
[
(ar,1 − ar,2)cr,1(nν − 2) + (br,1 − br,2)(cr,3 + cr,1(nν − 1)yr,1)

]}
. (12)

This equation is equivalent to the solution for the dx ≡ dx(y) case provided in Table 1.

Case 3. When cr,1 = 0 and dx = dx(z), the energy integral reduces to

Uν,r
vdW = γCνσ

nν

∫ yr,2

yr,1

∫ br,2y+ar,2

br,1y+ar,1

(cr,2z + cr,3)
−nν dz dy

=
γCνσ

nν

cr,2(1− nν)

∫ yr,2

yr,1

[
(ar,2cr,2 + cr,3 + br,2cr,2y)1−nν − (ar,1cr,2 + cr,3 + br,1cr,2y)1−nν

]
dy.

(13)

The solution depends on the values of br,1 and br,2.
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Case 3A. When br,1 6= 0 and br,2 6= 0,

Uν,r
vdW =

γCνσ
nν

cr,2(1− nν)

{(ar,2cr,2 + cr,3 + br,2cr,2yr,2)
2−nν − (ar,2cr,2 + cr,3 + br,2cr,2yr,1)

2−nν

br,2cr,2(2− nν)

+
(ar,1cr,2 + cr,3 + br,1cr,2yr,1)

2−nν − (ar,1cr,2 + cr,3 + br,1cr,2yr,2)
2−nν

br,1cr,2(2− nν)

}
. (14)

This is equivalent to the solution to the dx ≡ dx(z) case provided in Table 1.

Case 3B. When br,2 = 0,

Uν,r
vdW =

γCνσ
nν

cr,2(1− nν)

{
(yr,2 − yr,1)(ar,2cr,2 + cr,3)

1−nν

+
(ar,1cr,2 + cr,3 + br,1cr,2yr,1)

2−nν − (ar,1cr,2 + cr,3 + br,1cr,2yr,2)
2−nν

br,1cr,2(2− nν)

}
. (15)

Case 3C. When br,1 = 0,

Uν,r
vdW =

γCνσ
nν

cr,2(1− nν)

{
(yr,1 − yr,2)(ar,1cr,2 + cr,3)

1−nν

+
(ar,2cr,2 + cr,3 + br,2cr,2yr,2)

2−nν − (ar,2cr,2 + cr,3 + br,2cr,2yr,1)
2−nν

br,2cr,2(2− nν)

}
. (16)

Case 3D. Lastly, when br,2 = br,1 = 0,

Uν,r
vdW =

γCνσ
nν

cr,2(1− nν)

[
(yr,2 − yr,1)(ar,2cr,2 + cr,3)

1−nν + (yr,1 − yr,2)(ar,1cr,2 + cr,3)
1−nν

]
. (17)

Case 4. Finally, when the facets are parallel (cr,1 = cr,2 = 0), the solution to the energy
integral is given by

Uν,r
vdW = γCνσ

nν

∫ yr,2

yr,1

∫ br,2y+ar,2

br,1y+ar,1

c−nνr,3 dz dy

=
γCνσ

nν

2cnνr,3
(yr,2 − yr,1)[(yr,2 + yr,1)(br,2 − br,1) + 2(ar,2 − ar,1)] (18)

This is equivalent to the solution to the constant dx case provided in Table 1.
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Figure S2: Power-law model for the rod potential Urod of: (a) nanocubes of varying sizes D,
and (b) faceted particles of varying shapes of size D = 50σ. Inset shows a zoomed view of the
long-ranged portion of the potential. Symbols represent energies computed from atomistic
summation and solid lines represent power-law fits.

6



Figure S3: Comparison of UvdW calculated from the analytical model (solid lines) and from
atomistic summation (symbols) for D = 25σ (a–c), D = 75σ (d–f), and D = 100σ (g–i)
nanocubes. The plots correspond to: (a,d,g) parallel configurations (φ = θ = ψ = 0◦),
(b,e,h) coplanar configurations (θ = ψ = 0◦, dy = 0.5D, dz = D), and (c,f,i) general
configurations (φ = θ = ψ, dy = dz = 0.5D). The legends in (a), (b), (c) also apply to (d,g),
(e,h), and (f,i), respectively.
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Application to specific materials.

In this study, we employed the Lennard Jones (LJ) potential to model van der Waals (vdW)
interaction energy between atoms in which σ represents the diameter of the atoms and ε
represents the interatomic energy parameter. While we have not specified the values of ε and
σ to make the model applicable to arbitrary materials, careful choice of these LJ parameters
is essential for application of the analytical model to experimental nanoparticles made of
specific materials. The MATLAB application provides two methods for inputting the values
of ε and σ. The first method involves the user directly inputting the desired parameters.
This option is chosen by the application if the input value of ε in the edit field is not equal
to 0 (see Fig. 7 of the main manuscript). For the second method, the user needs to provide
the literature values of the relevant material properties, including the Hamaker constant
(A), atomic diameter (σ), atomic mass (m), and the mass density (ρ). From these material

Figure S4: Application of the analytical model to specific materials. (a-c) Utot between two
nanocubes with varying materials. The size of the nanocubes are kept at D = 50σ and the
configurations are (a) face-face (dy = dz = D, φ = θ = ψ = 0◦), (b) parallel nanocubes with
half of their faces overlapping (dy = D/2, dz = D, φ = θ = ψ = 0◦), (c) coplanar, face-edge
(dy = D/2, dz = D, φ = 45◦, θ = ψ = 0◦) configurations. (d) Comparison of Uatt obtained
from the analytical model (solid lines) and the experimentally derived energies (dashed lines)
for gold nanocubes with varying side lengths (D).
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properties, ε is derived through the following relationship, ε = Am2

4π2ρ2(2(1/6)σ)6
[1]. This method

is chosen when the inputted value of ε is equal to 0.

Table S1: LJ parameters for selected materials

Material A (J) m (Da) ρ (g/cm3) σ (nm) ε (kcal/mol)
Gold 2.5× 10−19 [2] 197.0 19.3 0.263 [3] 0.396
Silver 1.5× 10−19 [4] 107.9 10.5 0.263 [3] 0.240

Copper 2.7× 10−19 [5] 63.55 8.96 0.233 [3] 0.423
SiO2 7.6× 10−20 [6] 60.08 2.65 0.54 [7] 0.0079

All values of m and ρ are taken from [8].

To demonstrate the application of the model to specific materials, we have computed the
vdW interaction energies between nanocubes made of gold, silver, copper, and SiO2. The
parameters used for these materials are given in Table S1. For SiO2, we have employed an
approximate, coarse-grained model in which each SiO2 molecule is represented as a single
pseudo atom. We have also assumed that the molecules are in crystalline arrangements, with
σ chosen to equal its lattice constant [7]. The results shown in Figure S7a-c demonstrate that
the depths and the locations of the energy wells vary significantly depending on the material
properties of the nanocubes. Gold and copper nanocubes are interacting with significant
interaction strengths while the SiO2 nanocubes are weakly interacting.

To validate the accuracy of the model in its application to specific materials, we have
compared the attractive portions of the vdW energies (Uatt) obtained from our analytical
model with those obtained from the atomic force microscopy (AFM). AFM experiments have
shown that the vdW interaction energies between gold surfaces in water can be described by
the expression [2],

EA(ds) = − A

12πd2s
(19)

where, EA and ds are the energy per unit area and the surface separation distances. Experi-
ments approximated the vdW interaction energies between gold surfaces with A = 2.5×10−19

J. While Eq. 19 was derived assuming that the two surfaces are infinite and parallel, it
can be used to roughly estimate the vdW interaction energies of two nanocubes in face-
face configurations when the surfaces are close to each other. The results depicted in Fig-
ure S7d demonstrate that the energies obtained from the analytical model agree well with
the experimentally-derived energies, especially when the nanocubes are close to each other.
Such agreement further supports the effectiveness of our model in accurately obtaining the
vdW energy between the nanocubes.
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Computational implementation of model

In implementing the model, we consider the nanocubes to be in P1’s frame of reference so
that P1 is at the origin with its faces aligned normal to the three axes and P2 is interacting
with P1’s face along the positive x-axis. We then proceed to determine the positions of
the 8 vertices of P2, from which we identify the vertex or set of vertices exhibiting the
smallest x values, i.e., closest to the interacting face of P1; we denote these vertices as
“adjoining vertices”. Depending on the identity and the number of such vertices, we identify
all interacting faces of P2. For example, if there are four adjoining vertices, we know that
the cubes are parallel and there is one interacting face. Two adjoining vertices would imply
that one edge of P2 is parallel to P1’s face and that there are two interacting faces. The most
general case is when there is a single adjoining vertex and three faces of P2 are interacting.
After identification of P2’s interacting faces, we segment each such face into regions of
constant y integral limits and linear z(y) integral limits, as illustrated for a representative
interacting face in Fig. 1h of the main manuscript. Ideally, the regions need to be further
segmented so that the dx of all rods are either greater or less than dcut in each subregion.
However, we chose the set of rod potential parameters Cν and nν based on ds of the particle
and not the dx of each rod for two reasons. First, when ds > dcut, dx of all of the rods are
greater than dcut and further segmentation of the regions are unnecessary. Second, when
ds < dcut, UvdW is dominated by the interaction energies of the rods that are closest to P1, as
demonstrated in Fig. 5b. Therefore, our simplification for determining power-law parameters
based on ds is quite reasonable.

While most aspects of the analytical model can be straightforwardly implemented, com-
putationally segmenting the interacting faces into regions sharing common upper and lower
integral limit functions z(y) is not simple. To achieve this task, we recognize that the function
z(y) can change its form at y values corresponding to any one of the following: y-boundaries
of P1, vertex positions of P2, or intersection points of P2’s edges with P1’s z-boundaries.

Figure S5: Computational algorithm for region segmentation: (a) F1 y-z boundaries from
Fig. 1g. (b) Determination of all possible y values (dashed lines) at which the integral limit
z(y) may change its form. (c) Evaluation of y candidates that are within the intersection
of P1 and P2 boundaries (solid symbols) to obtain the interaction regions with equivalent
integral limits.
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Therefore, for each interacting facet of P2 identified, such as the one depicted in Fig. S4a
for illustration, we save all y values that meet the above criteria within an array ycandidate.
For the intersection of P2’s edges with P1’s z-boundaries, we treat P2’s edges as continuous
lines and use their corresponding line equations to determine where the lines cross P1’s z-
boundaries. The array members of ycandidate obtained for our illustrative example are marked
in Fig. S4b. We then sort the array in ascending order and identify the valid boundaries by
evaluating whether each array member falls within the intersection area of the P1 and P2
y-z boundaries, as shown in Fig. S4c. In this manner, we are able to divide P2’s interacting
faces into a set of regions bounded by four straight lines, two in the y direction with fixed y
values and two in the z direction that vary linearly with y coordinate.
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Figure S6: Comparison of the vdW energy landscape UvdW of atomistic nanocubes of size
D = 50σ and coarse-grained (CG) models of nanocubes of the same size at two different
levels of coarse-graining. The nanocubes are in (a) face-face configuration (φ = θ = ψ = 0◦

and dy = dz = D), and (b) face-edge configuration (φ = 45◦, θ = ψ = 0◦ and dy = D/2 and
dz = D). The atomistic cubes were constructed out of a 50× 50× 50 cubic lattice of atoms
of size 1σ. The two CG models were constructed out of 10 × 10 × 10 and 2 × 2 × 2 cubic
lattices of beads of size 5σ and 25σ, respectively. The Lennard-Jones energy parameter
for atoms was set to ε, while that of the CG beads were scaled to match the minima of
UvdW of the atomistic cubes in the face-face configurations. The CG models, even the finer
one, are clearly unable to capture the distance-scaling of the vdW energy (a) as well as its
orientational dependence (b).
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Figure S7: Comparison between atomistic summation and analytical model of CPU times
required for carrying out a single vdW interaction energy evaluation for nanocubes of varying
sizes. Both methods were implemented in MATLAB on an Intel Core i7-7700 processor,
and the CPU time was measured using the timeit function in MATLAB. The CPU time
for the atomistic summation method rose rapidly with cube side length (D) as ≈ 2.6 ×
10−7D6 seconds per evaluation, whereas the analytical model exhibited constant CPU time
of ≈ 7× 10−4 seconds.
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