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Experimental section 

Chemical Syntheses 

Polyoxometalates.  

All chemicals and solvents were purchased from Aldrich, VWR and Alfa Aesar and used as received. 

(TBA)3[-PW12O40], K7[-PW11O39].14H2O, K8[-SiW11O39].13H2O and K9[-AlW11O39].13H2O 

were prepared following published procedures (TBA stands for tetrabutylammonium cations): 

- (TBA)3[-PW12O40]: C. Rocchiccioli-Deltcheff et al., Inorg. Chem. 1983, 22, 207, 

- K7[-PW11O39].14H2O: P. Souchay in Polyanions et polycations, Gauthier-Villars, Paris, 

1963, 

- K8[-SiW11O39].13H2O: A. Tézé et al.  Inorg. Synth., 1990, 27, 85, 

- and K9[-AlW11O39].13H2O: J.J. Cowan et al., Inorg. Synth., 2002, 33, 18. 

 

(TBA)3[PW11O39{O(SiC3H6SH)2}] (POM-P). The synthesis of POM-P has been already detailed 

elsewhere [B. Martinez et al., J. Phys. Chem. C, 2018, 122, 26680]. Briefly, POM-P was formed by 

the condensation of the (OCH3)3SiC3H6SH silane on the K7 -PW11O39.14H2O precursor in a mixed 

water/acetonitrile medium at acidic pH and low temperature. The compound was recovered by adding 

an excess of tetrabutylammonium bromide (TBABr), and washed with diethylether to give a white 

powder with a good yield (76%). 

1H NMR (400 MHz, CD3CN) :  (ppm) 3.12 (m, 24H), 2.64 (m, 4H), 1.87 (m, 4H), 1.63 (m, 24H), 

1.39 (sex, 3J(H,H)=7.4Hz, 24H), 0.99 (t, 3J(H,H)=7.4Hz, 36H), 0.90 (m, 4H) ; 31P NMR (162 MHz, 

CD3CN)  (ppm) -12.37 ; IR (KBr pellet) : =2962 (m), 2934 (m), 2873 (w), 2567 (vw, SH), 1483 

(m), 1381 (w), 1111 (s, PO), 1065 (s, PO), 1052 (s, SiO), 1036 (s, SiO), 963 (vs), 870 (vs), 824 (vs), 

711 (m), 585 (w), 522 (m), 383 cm-1 (s) ; HRMS (ESI-), m/z (%) calcd for C6H14O40PS2Si2W11 : 

966.75  [M]3- ; found : 966.75 ; calcd for C22H50NO40PS2Si2W11 : 1571.26 [M + TBA]2- ; found : 

1571.26; Elemental Analysis calcd (%) for C54H122N3O40PS2Si2W11 : C 17.87, H 3.36, N 1.16; found :  

C 17.98, H 3.22, N 0.92  
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(TBA)4[SiW11O39{O(SiC3H6SH)2}] (POM-Si). K8 -SiW11O39.13H2O (0,4 g, 0.124 mmol) was 

dissolved in 20 mL of water. 15 mL of acetonitrile were added. Then 0.4 mL of diluted HCl (1M in 

water) was added to the turbid solution that became almost clear and reached a pH around 4. The 

mixture was cooled in an ice bath before the slow addition of the (OCH3)3SiC3H6SH silane (0.097 mL, 

0.497 mmol). Then 1 mL of diluted HCl was added to reach an apparent pH of 2 and the solution was 

kept under stirring during one night. Then TBABr (0,16 g, 0.497 mmol) was added to the clear 

solution and lead to the formation of a white precipitate. The powder was recovered by centrifugation, 

dissolved in 15 mL of acetonitrile then precipitated again thanks to the addition of an excess (10 éq) of 

TBABr and absolute ethanol. The white powder, recovered by centrifugation was washed with 

absolute ethanol and ether then dried under vacuum (yield 77%). 

1H NMR (400 MHz, CD3CN) :  (ppm) 3.15 (m, 32H), 2.64 (m, 4H), 1.86 (m, 4H), 1.64 (m, 32H), 

1.40 (sex, 3J(H,H)=7.4Hz, 32H), 0.99 (t, 3J(H,H)=7.4Hz, 48H), 0.76 (m, 4H) ; 29Si NMR (119 MHz, 

DMSO-d6)  (ppm) -53.07 (O-Si-C3H6-SH), -85.11 (Si-O-W) ; IR (KBr pellet) : =2961 (m), 2935 

(m), 2874 (w), 2567 (vw, SH), 1484 (m), 1381 (w), 1043 (s, SiO), 1018 (s, SiO), 963 (s), 947 (s), 904 

(vs), 855 (s), 806 (vs), 754 (sh), 710 (sh) 535 (m), 389 cm-1 (s) ; HRMS (ESI-), m/z (%) calcd for 

C6H14O40S2Si3W11 : 724.31 [M]4- ; found : 724.31 ;  calcd for C22H50NO40S2Si3W11 : 1046.51 [M + 

TBA]3- ; found : 1046.51 ; calcd for C38H86N2O40S2Si3W11 : 1690.90 [M + 2TBA]2- ; found : 1690.91 ; 

Elemental Analysis calcd (%) for C70H158N4O40S2Si3W11 : C 21.74, H 4.09, N 1.45; found :  C 21.70, H 

3.97, N 1.43. 

 

(TBA)5[AlW11O39{O(SiC3H6SH)2}] (POM-Al). K9 -AlW11O39.13H2O (0,4 g, 0.123 mmol) was 

dissolved in a mixture of water (20 mL) and acetonitrile (15 mL). Then 0.35 mL of diluted HCl (1M in 

water) was added. The turbid solution at pH=4 was cooled in an ice bath before the slow addition of 

the (OCH3)3SiC3H6SH silane (0.093 mL, 0.49 mmol). 0.6 mL of 1M HCl was then added to reach a 

pH around 2 and make the solution clear, which was kept one night under stirring. Then TBABr (792 

mg, 2,46 mmol) was added to the solution and an abundant white precipitate formed. After 

centrifugation the solid was dissolved in the minimum of acetonitrile then precipitated again with an 
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excess of absolute ethanol. The white powder was washed with absolute ethanol and ether then 

dispersed in dichloromethane, in which 400 mg of TBABr and 0.5 mL of triethylamine were added. 

The insoluble was separated by centrifugation and the filtrate concentrated in the rotary evaporator 

until the appearance of the first solid particles then an excess of absolute ethanol was added to make 

precipitate the product. The white powder was washed with absolute ethanol and ether and dried under 

vacuum (yield 75 %). 

1H NMR (400 MHz, CD3CN) :  (ppm) 3.18 (m, 40H), 2.62 (m, 4H), 1.84 (m, 4H), 1.65 (m, 40H), 

1.41 (sex, 3J(H,H)=7.4Hz, 40H), 0.98 (t, 3J(H,H)=7.4Hz, 60H), 0.64 (m, 4H) ; 27Al NMR (104 MHz, 

CD3CN)  (ppm) 72.1 ; IR (KBr pellet) : =2960 (m), 2934 (m), 2872 (w), 2551 (vw, SH), 1484 (m), 

1381 (w), 1035 (s, SiO), 1009 (s, SiO), 943 (vs), 928 (s), 881 (vs), 852 (s), 803 (vs), 546 (m), 473 (m), 

384 cm-1 (s) ; HRMS (ESI-), m/z (%) calcd for C38H86N2O40AlS2Si2W11 : 1126.94 [M + 2TBA]3- ; 

found : 1126.94 ; calcd for C54H122N3O40AlS2Si2W11 : 1811.55 [M + 3TBA]2- ; found : 1811.55 

Elemental Analysis calcd (%) for C86H194N5O40AlS2Si2W11  : C 25.14, H 4.72, N 1.70 ; found :  C 

24.87, H 4.59, N 1.49. 

 

(TBA4.1H0.9)[AlW11O39{O(SiC3H6SH)2}] (POM-AlH). The synthesis of POM-AlH followed exactly 

the procedure used for the synthesis of the POM-Al (see above) until the stirring of the solution 

during one night. Then, TBABr (198 mg, 0.615 mmol) was added to the clear solution and a white 

precipitate formed. The solid was recovered by centrifugation, dissolved in the minimum of 

acetonitrile then precipitated with an excess of ether, washed with ether and dried under vacuum (yield 

76%). 

1H NMR (400 MHz, CD3CN) :  (ppm) 3.14 (m, 33H), 2.62 (m, 4H), 1.82 (m, 4H), 1.64 (m, 33H), 

1.40 (sex, 3J(H,H)=7.4Hz, 33H), 0.98 (t, 3J(H,H)=7.4Hz, 49H), 0.74 (m, 4H) ; 27Al NMR (104 MHz, 

CD3CN)  (ppm) 71.7 ; IR (KBr pellet) : =2961 (m), 2935 (m), 2874 (w), 2564 (vw, SH), 1484 (m), 

1381 (w), 1034 (s, SiO), 1009 (s, SiO), 955 (vs), 937 (s), 888 (vs), 859 (s), 795 (vs), 541 (m), 470 (m), 

383 cm-1 (s) ; Elemental Analysis calcd (%) for C86H194N5O40AlS2Si2W11  : C 22.10, H 4.18, N 1.48 ; 

found :  C 22.22, H 3.80, N 1.53. 
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Platinum nanoparticles. The PtNPs have been synthesized as followed (S. Gomez et al., Chem. 

Commun. 2001, 1474 ; S. Tricard et al., Mater Horiz 2017, 4, 487). All operations were carried out 

using Fischer-Porter bottle techniques under argon. A solution of Pt2(dba)3 (90 mg; 0.165 mmol of Pt) 

in 20 mL of freshly distilled and deoxygenated THF was pressurized in a Fischer-Porter bottle with 1 

bar of CO during 30 minutes at room temperature under vigorous stirring. During this time, the 

solution color changed from violet to brown (attesting the formation of the NPs). The mixture was 

evaporated and washed with pentane to eliminate the dba (3 x 20 mL), and to obtain native NPs. The 

colloid was then redissolved in 20 mL of acetonitrile. The size of the NPs was found to be between 1.7 

± 0.3 nm and 2.1 ± 0.4 nm. 

 

Self-assembly. 1 mL of a solution of POM (at 6.10-3 mol.L-1 in acetontrile) was added to 4 mL of the 

native NP mixture under vigorous mixing. The precursor concentrations were adapted to obtain 0.2 eq. 

of POM per introduced Pt. The brown solution was agitated for 2 hours. Drops of the crude solution 

were deposited on specific substrates for each characterization (see below). The remaining solution 

was evaporated to dryness and was isolated as dark-brown powder. For each series of measurements, 

the sizes were determined by TEM imaging. 

 

Characterization of the polyoxometalates 

NMR spectroscopy. 1H and 31P spectra were recorded on a Bruker AvanceIII Nanobay 400 MHz 

spectrometer, the 27Al spectrum on a Brucker AvanceI 400 MHz and the 29Si spectrum on a Bruker 

Avance III 600 MHz, all equipped with a BBFO probehead. 1H and 29Si chemical shifts are quoted as 

parts per million (ppm) relative to tetramethylsilane using the solvent signals as secondary standard (s: 

singlet, d: doublet, t: triplet, sex: sextet, m: multiplet) and coupling constants (J) are quoted in Hertz 

(Hz). 31P and 27Al and 29Si  chemical shifts are quoted relative to 85% H3PO4 and Al(NO3)3 1M in 

D2O, respectively. All spectra were recorded in CD3CN, except for the POM-Si, poorly soluble in 

acetonitrile, which was dissolved in DMSO-d6 to record the 29Si spectrum. 
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IR spectroscopy. IR spectra of all the powders were recorded from a KBr pellet on a Jasco FT/IR 4100 

spectrometer (32 scans, resolution 4 cm-1). 

 

Mass spectrometry. High-resolution ESI mass spectra were recorded using an LTQ Orbitrap hybrid 

mass spectrometer (Thermofisher Scientific, Bremen, Germany) equipped with an external ESI source 

operated in the negative ion mode. Spray conditions included a spray voltage of 3.5 kV, a capillary 

temperature maintained at 270 °C, a capillary voltage of −40 V, and a tube lens offset of −100 V. 

Sample solutions in acetonitrile (10 pmol.μL-1) were infused into the ESI source by using a syringe 

pump at a flow rate of 180 μL.h-1. Mass spectra were acquired in the Orbitrap analyzer with a 

theoretical mass resolving power (Rp) of 100 000 at m/z 400, after ion accumulation to a target value 

of 105 and a m/z range detection from m/z 300 to 2000. All data were acquired using external 

calibration with a mixture of caffeine, MRFA peptide and Ultramark 1600 dissolved in Milli-Q water/ 

HPLC grade acetonitrile (50/50, v/v). 

 

Elemental analysis. Elemental analyses were performed at the Institut de Chimie des Substances 

Naturelles, Gif sur Yvette, France, for the POM-P, POM-Si and POM-Al and at the Laboratoire de 

Chimie de Coordination, Toulouse, France for the POM-AlH. 

 

Electrochemistry. Electrochemical studies were performed on an Autolab PGSTAT 100 workstation 

(Metrohm) using a standard three-electrode set-up. Glassy carbon electrode, platinum wire and 

saturated calomel electrode (SCE) were used as the working, auxiliary and reference electrode, 

respectively. The cyclic voltammograms were recorded in 1 mM solutions of the POMs in acetonitrile 

with tetrabutylammonium hexafluorophosphate TBAPF6 as electrolyte (0.1 M), at a scan rate of 0.1 

V.s-1. To get around the problem of solubility of POM-Si, the POM was dissolved first in a drop of 

DMF then an excess of acetonitrile was added to fill the electrochemical cell. 
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Detailed interpretation of the POM characterization. On the NMR spectra, the typical peaks of the 

TBA counter cations were present, as well as three supplementary multiplets, integrating for four 

protons and corresponding to the methylene groups of the aliphatic arms wearing the thiol group (Fig. 

S1 to S3). The comparison of the three 1H NMR spectra (Fig. S4) showed, as expected, an increasing 

of the TBA/methylene peaks ratio, as the POM charge increased. In addition, the multiplet 

corresponding to the closest methylene from the POM inorganic core shifted significantly from POM-

P (= 0.90 ppm), to POM-Si (= 0.76 ppm) to POM-Al (= 0.64 ppm), probably due to the charge 

variation, which modulates the number of counter cations surrounding the POM. IR spectroscopy 

confirmed the structural features of the three POMs (Fig. S5): the main bands of the TBA counter 

cations (around 2900, at 1484 and at 1381 cm-1) and of the POMs inorganic core (between 300 and 

1150 cm-1) were observed on all the spectra, as well as the vibration bands of the S-H and the Si-O 

bonds, characteristic of the organic arm of the hybrid POMs. Mass spectrometry was in agreement 

with the proposed chemical structures of the three POMs (Fig. S6 to S8). Elemental analysis 

confirmed the number of TBA surrounding the POMs and thus their charges: 3- for POM-P, 4- for 

POM-Si and 5- for POM-Al.  

 

Structural characterization of nanoparticles and self-assemblies 

Transmission Electron Microscopy. Samples for TEM were prepared by deposition of one drop of the 

crude solution on a carbon covered holey copper grid. TEM analyses were performed at the “centre de 

microcaractérisation Raimond Castaing” using a JEOL JEM 1400 electron microscope operating at 

120 kV. The mean size of the particles was determined by image analysis on a large number of 

particles (~300) using the ImageJ software.  

 

Infrared spectroscopy. FT-IR spectra were recorded on a Thermo Scientific Nicolet 6700 FT-IR 

spectrometer in the range 4000-700 cm-1, using a Smart Orbit ATR platform. The sample deposition 

was performed by drop casting of the crude solution on the germanium crystal of the platform; the 

measurement was acquired after evaporation of the acetonitrile solvent. 
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Small angle X-ray scattering. SAXS patterns were recorded on a PANalytical Empyrean 

diffractometer using the Co Kα radiation. Small angle measurements were performed on a microscopy 

glass, on which the crude solution was drop casted. An advantage of working with particles smaller 

than 2 nm is that the inter-particle distance is sufficiently small to observe correlation distances 

between two particles with a regular XRD diffractometer without the need of any dedicated SAXS 

facilities. 

 

Charge transport measurement 

Dielectric constant. Dielectric spectroscopy measurements were performed on powder samples 

compacted between two stainless steel electrodes (diameter 10 mm) in a Teflon sample holder. The 

thickness of the powder was as small as possible (~400 µm) to increase the sensitivity of the 

measurement.  Dielectric measurements were carried out as a function of frequency (10-2 - 106 Hz) and 

temperature (100 -296 K) using a Novocontrol broadband dielectric spectrometer at an applied AC of 

1 Vrms. Frequency sweeps were carried out isothermally. The intrinsic dielectric constant of the free 

aryl ligands was obtained from the real part ’() of the complex dielectric permittivity*() taken at 

a high frequency of 1MHz. 

 

I-V curve measurement. Conductive AFM measurements were performed with an AIST-NT 

SmartSPM 1000 microscope, equipped with a conductive AFM unit. The samples were prepared by 

drop casting of one drop of the crude solution on silicon wafers covered by a ~50 nm layer of gold 

(with a ~5 nm chromium anchoring layer). We used conductive silicon tips covered by platinum 

(Mikromash HQ-NSC15/Pt). Typical measurements consisted in first performing a topography image 

of the sample and then going in contact on zones with individual assemblies to measure their I-V 

characteristics. Measurements were performed on several objects per zone and several zones of the 

substrates. 
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Data analysis. The I-V characteristics were normalized at 2 V. We then averaged the characteristics on 

50 curves (error bars on the graphs are 95% confidence intervals). In order to fit the I  V behavior, 

the linear component determined at low I values was subtracted and data were fitted for positive I 

values by the formula I/I(2V) = (V/2). The charging energies were calculated by the formula given in 

the main text; all the experimental data necessary to calculate the charging energies are available in 

Table S1. Differences in absolute value of current at a finite voltage are hardly distinguishable (Fig. 4a 

and b). But the extraction of the power exponent  gives a good enough precision to statistically 

distinguish the current responses of the different systems (Table S1 and Fig. 4c). 
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Supplementary characterization data 

 

Figure S1. 1H NMR (400 MHz) and 31P NMR (162 MHz, inset) spectra of POM-P in CD3CN. 

 

 

Figure S2. 1H NMR (400 MHz) spectrum in CD3CN and 29Si NMR (119 MHz, inset) spectrum in 

DMSO-d6 of POM-Si. 

31P	

29Si	
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Figure S3. 1H NMR (400 MHz) and 27Al NMR (104 MHz, inset) spectra of POM-Al in CD3CN. 

 

 

Figure S4. Stacking of the 1H NMR spectra of POM-P (green), POM-Si (blue) and POM-Al (red). 

27Al	
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Figure S5. Infrared spectra from a KBr pellet of a) POM-P, b) POM-Si, c) POM-Al. 

 

 

Figure S6. Comparison of calculated (upper trace) and experimental (lower trace) isotopic peaks for 

the ions [C6H14O40PS2Si2W11]3- (left) and [C22H50NO40PS2Si2W11 ]2- (right) of POM-P. 
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Figure S7. Comparison of experimental (upper trace) and calculated (lower trace) isotopic peaks for 

the ions [C22H50NO40S2Si3W11 ]3- (left) and [C38H86N2O40S2Si3W11]2- (right) of POM-Si. 

 

 

Figure S8. Comparison of experimental (upper trace) and calculated (lower trace) isotopic peaks for 

the ions [C38H86N2O40AlS2Si2W11]3- (left) and [C54H122N3O40AlS2Si2W11 ]2- (right) of POM-Al. 
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R: 100000 Res .Pwr . @FWHM



14 

 

 

Figure S9. 1H NMR (400 MHz) and 27Al NMR (104 MHz, inset) spectra of POM-AlH in CD3CN. 

 

 

Figure S10. Cyclic voltammogram at a glassy carbon electrode of POM-AlH (1 mM) in a 0.1 M 

TBAPF6 solution in CH3CN at a scan rate of 0.1 V.s-1. 

 

  

27Al	

-2,5 10
-5

-2 10
-5

-1,5 10
-5

-1 10
-5

-5 10
-6

0

5 10
-6

-2,5 -2 -1,5 -1 -0,5 0 0,5

I 
(A

)

E (V) vs SCE



15 

 

   

Figure S11. TEM pictures and size distributions of the Pt nanoparticles in the: a) SA-Al (1.5 ± 0.2 

nm), b) SA-Si (1.5 ± 0.2 nm), c) SA-P (1.7 ± 0.4 nm), and d) SA-AlH (1.5 ± 0.2 nm) self-assemblies. 
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Figure S12. Infrared spectra of the pristine Pt nanoparticles and of a mixture of these Pt nanoparticles 

and unfunctionalized POM-P polyanions: a) full spectra and b) zoom on the terminal CO region 

(baselines are shifted for clarity – the dashed line is a guide for the eye); peak maxima: Pt NP: 2042 

cm-1, Pt NP + unfunctionalized POM P: 2041 cm-1, 
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Figure S13. TEM pictures and size distributions of the Pt nanoparticles in the: a) SA-Al-2 (1.9 ± 0.3 

nm), b) SA-Si-2 (2.0 ± 0.3 nm), c) SA-P-2 (2.0 ± 0.3 nm), and d) SA-AlH-2 (2.0 ± 0.4 nm) self-

assemblies. 
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Figure S14. Infrared spectra of the pristine Pt nanoparticles and of the SA-Al-2, SA-Si-2, SA-P-2, and 

SA-AlH-2 self-assemblies: a) full spectra and b) zoom on the terminal CO region (the baselines are 

shifted for clarity – the dashed lines are a guide for the eye); peak maxima: Pt NP - 2: 2040 cm-1, SA-

Al-2: 2032 cm-1, SA-Si-2: 2035 cm-1, SA-P-2: 2038 cm-1, and SA-AlH-2: 2036 cm-1. 
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 d (± 0.05 nm) s (± 0.05 nm) r (± 0.05) Ec (eV) 

SA-Al 1.5 2.4 3.10 0.63 ± 0.05 2.92 ± 0.06 

SA-Si 1.5 2.4 3.36 0.58 ± 0.05 2.94 ± 0.07 

SA-P 1.7 2.4 3.97 0.35 ± 0.03 2.19 ± 0.06 

SA-AlH 1.5 2.4 3.51 0.56 ± 0.05 2.69 ± 0.06 

SA-Al-2 1.9 2.8 3.10 0.43 ± 0.03 2.70 ± 0.07 

SA-Si-2 2.0 2.8 3.36 0.34 ± 0.03 2.16 ± 0.06 

SA-P-2 2.0 2.8 3.97 0.29 ± 0.02 1.94 ± 0.06 

SA-AlH-2 2.0 2.8 3.51 0.33 ± 0.02 1.99 ± 0.07 

Table S1. Nanoparticle size d, inter-particle distance s, dielectric constant of the POM r, charging 

energy Ec, and power exponent  of the self-assemblies considered in the manuscript. d, s and r are 

determined experimentally; Ec is calculated from these values with the equation given in the main 

text; and  is fitted from the I-V curves. Margins of error have been determined from the precision of 

measurements: trends of evolution for both Ec and ξ are significant (but a more precise study of 

differences falls within the margins of error). 
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Figure S15. a) Small angle X-ray scattering patterns for the substrate alone (reference without any 

compound – ref) and for the SA-Si and SA-Si-2 self-assemblies. The reference corresponds to the 

signal of the continuous background, whereas the self-assemblies show supplementary broad peaks, 

which corresponds to a specific correlation distance between the nanoparticles. b) SAXS patterns of 

the SA-Si and SA-Si-2 self-assemblies after subtraction of the background signal and fit of the curves 

for estimation of the correlation distances (s = 2π / qmax): SA-Si: qmax = 0.26 Å-1, s = 2.4 nm ; and SA-

Si-2: qmax = 0.22 Å-1, s = 2.8 nm. 


