## **Supporting Information**

## Tumor-targeted Gene Therapy with Lipid Nanoparticles Inhibits Tumor -Associated Adipocytes and Remodels the Immunosuppressive Tumor Microenvironment in Triple-Negative Breast Cancer

Yun Liu<sup>1</sup>, Karthik Tiruthani<sup>2</sup>, Menglin Wang<sup>1</sup>, Xuefei Zhou<sup>1</sup>, Nasha Qiu<sup>1</sup>, Yang Xiong<sup>1</sup>, Chad V. Pecot<sup>3</sup>, Rihe Liu<sup>2,4\*</sup>, Leaf Huang<sup>1\*</sup>

<sup>1</sup> Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

<sup>2</sup> Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

<sup>3</sup> UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

<sup>4</sup> Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

\* Corresponding author

Leaf Huang

Division of Pharmacoengineering and Molecular Pharmaceutics,

Eshelman School of Pharmacy,

University of North Carolina at Chapel Hill,

Chapel Hill, NC, 27599, USA

Phone: +1-919-843-0736

Email: leafh@email.unc.edu

Rihe Liu

Division of Chemical Biology and Medicinal Chemistry,

Eshelman School of Pharmacy,

University of North Carolina at Chapel Hill,

Chapel Hill, NC, 27599, USA

Phone: +1-919-843-3635

Email: rliu@email.unc.edu



Orthotopic model

Subcutaneous model

Figure S1. Immunofluorescence staining of tumor samples from orthotopic model and subcutaneous model using anti-CD31 antibody (green). Cell nuclei were stained as blue using DAPI. Five random fields were chosen for statistical analysis in each treatment groups. Images were analyzed by Image J software and quantified with GraphPad 6.0. Scale bar represents 50 µm.



Figure S2. A. The CCL2 mRNA levels among different tissues/organs. B. Representative clinical tumor tissue from TNBC patients, cited from The Human Protein Atlas. High expression of CCL2 was found in human TNBC samples. C. High CCL2 expression correlates with shorter survival and poor prognosis in human TNBC. Data obtained from TCGA database. p = 0.0087.

## Zeta Potential Distribution



Figure S3. The zeta potential of final LPD NPs measured by DLS.

| Sample<br>Name  | RBC<br>(M/uL) | HGB<br>(g/dL) | PLT<br>(K/uL) | WBC<br>(K/uL) | NEUT<br>(K/uL) | LYMPH<br>(K/uL) | MONO (%) |
|-----------------|---------------|---------------|---------------|---------------|----------------|-----------------|----------|
| PBS             | 7.5±0.4       | 11.7±1.6      | 16.1±1.8      | 8.7±1.1       | 6.5±1.2        | 2.1±1.8         | 7.9±2.5  |
| pPD-L1<br>trap  | 7.8±1.1       | 12.1±1.5      | 14.3±0.9      | 8.5±1.3       | 6.6±2.4        | 3.2±0.6         | 6.1±1.1  |
| pGFP            | 8.2±0.5       | 11.8±1.7      | 14.9±2.4      | 8.2±0.9       | 5.9±1.4        | 2.9±1.1         | 8.4±1.3  |
| pCCL2 trap      | 7.4±1.5       | 12.4±0.4      | 13.6±1.3      | 8.9±1.1       | 6.6±1.2        | 3.4±0.7         | 7.9±1.2  |
| Combo trap      | 7.7±1.2       | 10.9±0.8      | 11.7±2.4      | 7.7±1.4       | 5.6±1.9        | 2.4±0.9         | 6.9±0.7  |
| Normal<br>Range | 6.5-10.1      | 10.1-16.1     | 7.8-15.4      | 2.6-10.1      | 2.5-7.5        | 1-4.8           | 2.0-10.0 |

Table S1. Whole cell counts of 4T1 bearing mice in different treatment groups.

| Antibodies                                              | Company    | Application |
|---------------------------------------------------------|------------|-------------|
| Alexa Fluor®647 anti-mouse CD3 Antibody                 | Biolegend  | IF, Flow    |
| Alexa Fluor®594 anti-mouse CD4 Antibody                 | Biolegend  | Flow        |
| eFluro 450 anti-mouse CD8a antibody                     | Biolegend  | Flow        |
| PE/Cyanine 7 anti-mouse CD11c Antibody                  | Biolegend  | Flow        |
| APC anti-mouse CD62L antibody                           | Biolegend  | Flow        |
| Alexa Fluor® 488 anti-mouse CD11b Antibody              | Biolegend  | Flow        |
| Alexa Fluor® 647 anti-mouse Ly-6G/Ly-6C (Gr-1) Antibody | Biolegend  | Flow        |
| Alexa Fluor® 488 anti-mouse NK1.1 Antibody              | Biolegend  | Flow        |
| PE anti-mouse F4/80 Antibody                            | Biolegend  | Flow        |
| PerCP/Cyanine 5.5 anti-mouse CD206 Antibody             | Biolegend  | Flow        |
| APC/Cyanine 7 anti-mouse CD86 Antibody                  | Biolegend  | Flow        |
| FIFC anti-mouse CD45 Antibody                           | Biolegend  | Flow        |
| APC anti-mouse CD31 Antibody                            | Biolegend  | IF          |
| Alexa Fluor® 488 anti-α-SMA Antibody                    | Invitrogen | IF          |

IF: immunofluorescence; Flow: flow cytometry

Table S2. Antibodies used in this study.

| Primers      | Applied Biosystems/Ref | Assay method |
|--------------|------------------------|--------------|
| Mouse IFN-γ  | Mm01168134_m1          | TaqMan ®     |
| Mouse TNF-α  | Mm00443260_g1          | TaqMan ®     |
| Mouse TGF-β  | Mm01178820_m1          | TaqMan ®     |
| Mouse IL-10  | Mm01288386_m1          | TaqMan ®     |
| Mouse CXCL9  | Mm00434946_m1          | TaqMan ®     |
| Mouse CXCL10 | Mm04214185_m1          | TaqMan ®     |
| Mouse CCL2   | Mm00441242_m1          | TaqMan ®     |
| Mouse IL-1β  | Mm00434228_m1          | TaqMan ®     |
| Mouse GAPDH  | Mm99999915_g1          | TaqMan ®     |
| Mouse MMP2   | Mm00439498_m1          | TaqMan ®     |
| Mouse MMP9   | Mm00442991_m1          | TaqMan ®     |
| Mouse MMP13  | Mm00439491_m1          | TaqMan ®     |
| Mouse PDGF-C | Mm00439560_m1          | TaqMan ®     |
| Mouse IL-12  | Mm00434169_m1          | TaqMan ®     |
| Mouse CXCL12 | Mm00445553_m1          | TaqMan ®     |
| Mouse CXCL13 | Mm04214185_s1          | TaqMan ®     |

Table S3. Primers for RT-PCR used in this study.