Electronic Supplementary Material (ESI) for Nanoscale Horizons. This journal is © The Royal Society of Chemistry 2021

Visible-Light-Driven Cuprous Oxide Nanomotors with Surface Heterojunction-

Induced Propulsion

Wenjuan Liu,*ab Xiao Chen, a Xiaoyong Ding, a Qiang Long, a Xiaolong Lu,*c Qiang Wang d* and Zhongwei Guab

a College of Materials Science and Engineering, Nanjing Tech University, Nanjing

211816, China

b Jiangsu Collaborative Innovation Center for Advanced Inorganic Functional

Composites, Nanjing Tech University, Nanjing 211816, China

c State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

d School of Chemistry and Molecular Engineering Nanjing Tech University, Nanjing 211810, China

Corresponding authors:

Wenjuan Liu: liuwenjuan@njtech.edu.cn

Xiaolong Lu: long 8446110@nuaa.edu.cn

Qiang Wang: wangqiang@njtech.edu.cn

Video S1: Movement of truncated octahedral and spherical Cu₂O micro/nanomotors in

ultra-pure water and 0.01% H₂O₂ solution under ambient light.

Video S2: Cu₂O nanomotors in ultra-pure water under different light sources.

Video S3: Cu₂O nanomotors in 0.01% H₂O₂ under different light sources.

Video S4: Negative phototactic behavior of Cu₂O nanomotors in different solutions

under blue point light source.

Possible photocatalytic mechanism

Owning to the limited penetration depth of light in semiconductor, asymmetric

concentration gradients of photocatalytic products will be generated on the surface of

the photocatalyst under visible light irradiation, producing the autonomous motion of

corresponding motors in the form of diffusiophoresis.^{1,2} Analogously, Cu₂O crystals

can create holes (h⁺) and electrons (e⁻) within the visible region of the spectrum.

Moreover, it is well recognized that Cu₂O has a strong adsorption capacity for oxygen

molecules (O_2) . The photogenerated electrons migrated to the crystal surface can react

with the adsorbed O_2 to produce superoxide anion free radicals ($\cdot O_2^-$). The $\cdot O_2^-$ reaction

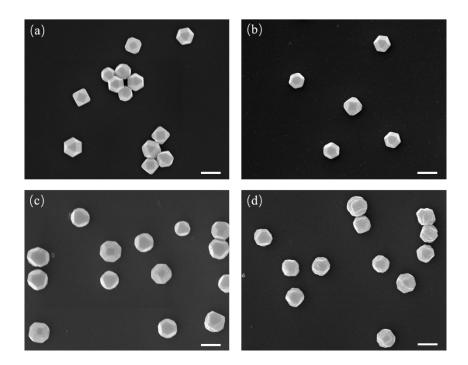
with H_2O can further result in the formation of hydroxyl ions (OH⁻) and hydroxyl radicals (·OH). Meanwhile, the photogenerated holes accumulated on the facets of the Cu_2O crystals can react with OH⁻ to generate ·OH. The possible catalytic cycle is given below:

$$Cu_2O + hv \rightarrow e^- + h^+ \tag{2}$$

$$O_2 + e^- \rightarrow \cdot O_2^- \tag{3}$$

$$2H_2O + \cdot O_2^- + 2e^- \rightarrow 3OH^- + \cdot OH$$
 (4)

$$OH^{-} + h^{+} \rightarrow \cdot OH \tag{5}$$

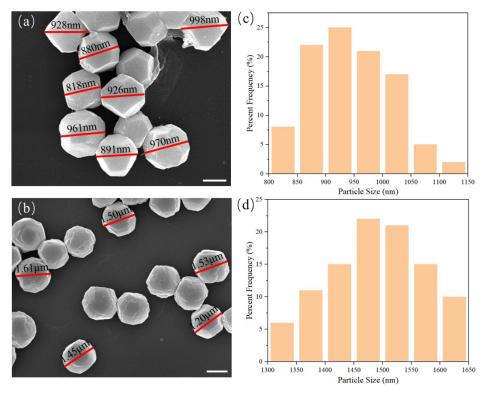
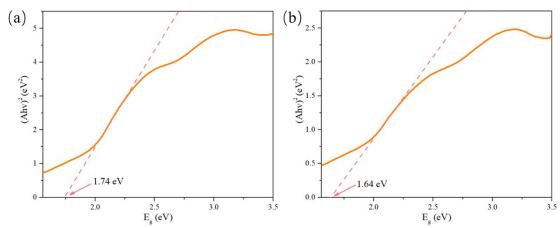
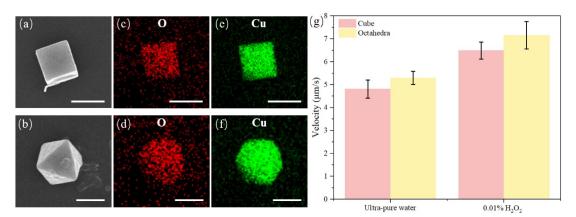

Thus, ideally, without any additional surface modification, single-component Cu₂O micro/nanomotors could present good optical response in the visible light range. However, photocorrosion effect leads to a poor photogenerated charges separation/transport capability of Cu₂O, thereby reducing its photocatalytic activity. As mentioned above, apart from forming heterojunction with other materials, engineering crystal facet is also helpful to improve Cu₂O performance.

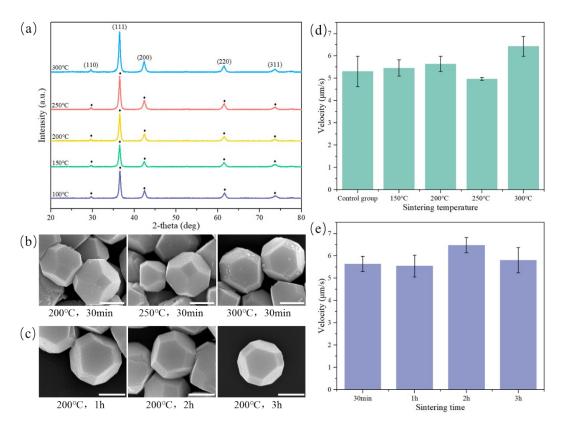
References

- [1] J. Wang, Z. Xiong, J. Zheng, X. Zhan and J. Tan, *Acc. Chem. Res.*, 2018, **51**, 1957-1965.
- [2] W. Wang, W. Duan, S. Ahmed, T. E. Mallouk, A. Sen, *Nano Today*, 2013, **8**, 531-554.
- [3] L. Tang, J. Lv, S. Sun, X. Zhang, C. Kong, X. Song, Z. Yang, *New J. Chem.*, 2014, **38**, 4656-4660.

Fig. S1 Schematic diagram of preparation process and optical photo of Cu₂O particulates.

Fig. S2 SEM of Cu_2O micro/nanomotor synthesized by different dosage of PVP 0.5 g (a), 1.0 g (b), 1.8 g (c), 3.5 g (d), respectively. Scale bar: 1 μ m.


Fig. S3 Size distribution histograms for truncated octahedral Cu_2O nanomotors (a) and spheroidal Cu_2O micromotors (b).

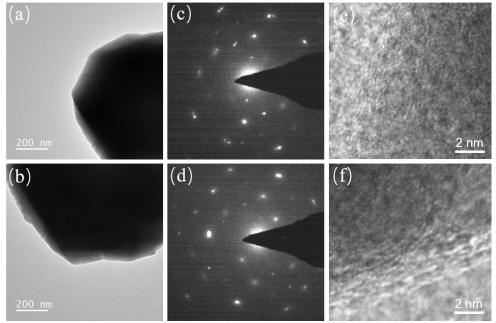

Fig. S4 Band gap energy of Cu₂O micro/nanomotors with spherical (a) and truncated octahedral structure (b), respectively.

Fig. S5 SEM images of Cu_2O micro/nanomotors with cubic (a) and octahedral structures (b). EDX mapping images for O and Cu elemental distribution of cubic (c)&(e) and octahedral (d)&(f) Cu_2O micro/nanomotors, respectively. (e) Velocity of cubic and octahedral Cu_2O motors in ultra-pure water and 0.01 v% H_2O_2 solution under ambient light exposure.

Fig. S6 Influence of heat treatment on the structure and motion speed of truncated octahedral Cu₂O nanomotors. XRD patterns of Cu₂O nanomotors after heat treatment at different sintering temperature for 30 min (a); SEM images of Cu₂O nanomotors after different heat treatment process: different sintering temperature for 30 min (b), different sintering time at 200 °C (c); Speed of Cu₂O nanomotors under ambient light in pure water after different heat treatment process: different sintering temperature for 30 min (d), different sintering time at 200 °C (e). Scale bar: 500 nm.

Fig. S7 Detailed morphology and crystal structure for spherical Cu₂O micromotors. TEM images (a, b), SAED patterns (c, d), and high-resolution TEM images (e, f).

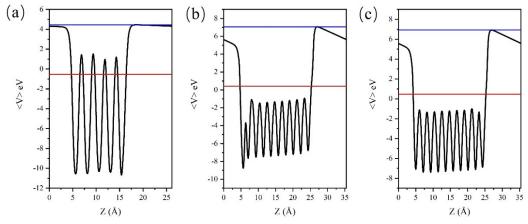


Fig. S8 Work function of $Cu_2O(111)$ (a), (100)Cu (b) and (100)O (c) surfaces.

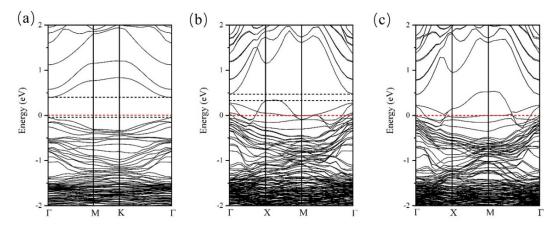
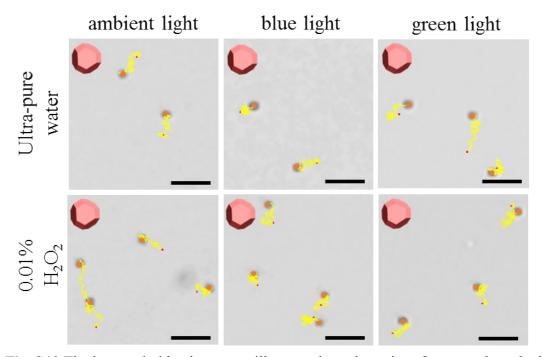
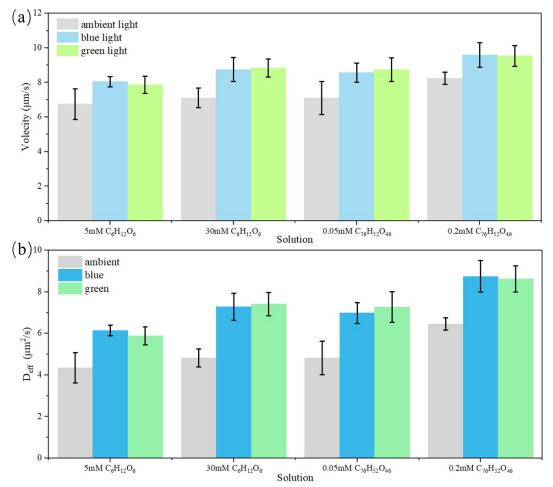




Fig. S9 Energy band structures of $Cu_2O(111)$ (a), (100)Cu (b) and (100)O (c) surfaces.

Fig. S10 The imposed video images to illustrate the trajectories of truncated octahedral Cu_2O nanomotors in pure water an in 0.01 v% H_2O_2 solution over 3 seconds. Scale bar: 5 μm .

Fig. S11 Velocity (a) and effective diffusion coefficient (b) of truncated octahedral Cu₂O nanomotors in various concentration glucose and tannic acid solutions after exposure of visible light (ambient light, blue light, green light).

Table S1 The lattice constants obtained experimental values. All values are given in Å. a, b, and c are the lattices lengths. α , β and γ are angles.

System	a	b	α	β	γ
Cu ₂ O(1 1 1)	6.10	6.10	90	90	120
$Cu_2O(1\ 0\ 0)$	4.31	4.31	90	90	90
$Cu_2O(2\ 0\ 0)$	4.31	4.31	90	90	90
$Cu_2O(1\ 1\ 0)$	4.31	6.10	90	90	90

Table S2 Averaged electrostatic potential of the Cu-terminated and O-terminated Cu_2O slabs as a function of z-direct coordinate. The vacuum level was shifted to the zero point. The work function (Φ) $\Phi=E_{vac}$ - E_f .

	Cu ₂ O(1 1 1)	Cu ₂ O(1 0 0) _{Cu}	Cu ₂ O(1 0 0) _O
E_{vac}	4.45	7.06	6.93
E_{F}	-0.53	0.42	0.48
Φ	4.98	6.64	6.45

Table S3 The energy band of the Cu-terminated and O-terminated Cu₂O slabs. The Band gap (Φ) E_g = E_{cbm} – E_{vbm}

	Cu ₂ O(1 1 1)	Cu ₂ O(1 0 0) _{Cu}	Cu ₂ O(1 0 0) _O
E_{Fermi}	-0.53	0.42	0.48
E_{cbm}	0.40	0.47	-
E_{vbm}	-0.04	0.33	-
$E_{\text{ban-gap}}$	0.44	0.14	-