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S1. EXPERIMENTAL DETAILS

A. QD synthesis

We have synthesize cadmium selenide (CdSe) quantum dots (QDs) of diameter dQD =

5.5 nm (polydispersity 13%) by following the reported procedure [1].

B. QD ligand exchange with DMPS ligands

The native hydrophobic oleate ligands were replaced with hydrophilic 2,3-dimercapto-1-

propanesulfonates (DMPS) by using a two-phase system where a 40µM dispersion of QDs

in hexane was placed in contact with a 40 mM solution of DMPS in N-methylformamide.

After stirring the mixture vigorously for 1 hour, the QDs migrated to the polar phase

as a consequence of the ligand exchange. The polar phase was collected and QDs were

precipitated by adding an additional volume of acetonitrile. After centrifugation at 3000 g

for 20 min, the clear supernatant was discarded and QDs were redispersed at a concentration

of 2µM in the binary solvent, a 30w/w% solution of 2,6-lutidine in water, with an additional

10 mM NaOH to improve the colloidal stability of QDs.

C. Substrate surface treatment

A silicon substrate was made hydrophilic through 1 minute of plasma cleaning, or hy-

drophobic through a silanization treatment with 3-mercaptopropyl trimethoxysilane by fol-

lowing the literature (ref.[2], cleaning method 2, and stored under vacuum overnight prior to

use). The silanization treatment resulted in a contact angle with water of 74◦, see Fig. S1.
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FIG. S1. Contact angle measurement. Contact angle measurement of the silanized silicon

substrate with water. The measured contact angle is 74.4± 0.4 ◦.

D. QD epitaxial deposition using critical Casimir forces

A volume of 1.5 mL of the QD dispersion was added to a glass test tube (14 mm ID).

The silicon substrate was placed in thermal contact with a cylindrical steel block (13.5 mm

in diameter) and immersed in the binary solvent. The substrate was heated by means of

a heating element embedded in the steel block and placed 0.3 mm from the surface, to

temperature T , such that ∆T = Ts − T > 0, where Ts is the phase separation temperature

of the binary solvent. By keeping the bulk of the solvent at room temperature (RT ), we

established a vertical temperature gradient going from T in the proximity of the substrate

to RT far from the substrate (Fig. 1a in the main text and Fig. S2). The magnitude of the

critical Casimir interaction is strongly dependent on ∆T , since the size of the fluctuations

follows a power-law dependence of the type ξ ∼ ξ0|∆T/Ts|−0.63. This makes the surface of the

substrate the only active location for QD deposition. To ensure maximum reproducibility,

we measured the size of the solvent density fluctuations prior to each deposition in proximity
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FIG. S2. Calculated temperature distribution in the binary solvent. Calculated temper-

ature distribution in the binary solvent considering heating from the top (T (y = 2 cm) = 33 °C)

while the other walls of the container are in good thermal contact with a room-temperature bath

(T (x = 0) = T (x = 2) = T (y = 0) = 20 °C). The temperature range used for the assembly was

20 °C to 33 °C.

of the substrate with dynamic light scattering by measuring the hydrodynamic diameter of

the fluctuations and correcting for the ∆T -dependence of the viscosity [3]. All micrographs

shown in the main text correspond to a deposition time of one hour. Longer deposition

times lead to an increase in the amount of deposited material, as shown in Fig. S3. After

each deposition, the silicon substrate was retrieved, dipped in acetonitrile, and dried under

vacuum prior to imaging.

E. Scanning electron microscopy

Electron micrographs were collected by using a Verios XHR SEM microscope (FEI) op-

erated at 5 kV and 100 pA.
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a b

FIG. S3. Effect of longer deposition times. Scanning electron micrographs of hydrophilic

silicon substrates retrieved from the QD deposition mixture after (a) 1 hour and (b) 3 hours of

deposition for the correlation length ξ = 6 nm and the Debye length λD = 15 nm.

a b

FIG. S4. QD deposition on a gold substrate. Scanning electron micrographs of gold

(SiO2/Ti/Au prepared by sputtering) substrates retrieved from the QD deposition mixture af-

ter 1 hour of deposition for the correlation length ξ = 6 nm and the Debye length (a) λD = 10 nm

and (b) λD = 25 nm.
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S2. ELECTROSTATIC INTERACTIONS

A. QD-QD

In our energy minimization and MD simulations (Section S4 A and S4 B), we used the

DLVO theory [4] to describe the electrostatic repulsion between quantum dots

βUel(r) =
Z2λB

(1 + dQD/2λD)2
e−(r−dQD)/λD

r
, (S1)

where r is the center-to-center distance between two QDs, Z is the charge (in units of the

elementary charge e), λB = βe2/(4πεrε) is the Bjerrum length and λD = (8πρlB)−1/2 the

Debye screening length (all in Gaussian units). Here ρ is the salt concentration, ε the vacuum

permittivity and εr the relative dielectric constant.

In all calculations, we took εr = 7 corresponding to a critical water-lutidine mixture [5],

which gives λB ≈ 8 nm at room temperature. We used the renormalized colloidal charge [6]

Z = 2.13 (Z = 0.2Zbare with Zbare = 7.1 in water as estimated from ζ potential).

B. QD-substrate

Electrostatic interaction potential between a QD and a substrate is [4]

βUel(D) = Aele
−D/λD , (S2)

where D is the surface-to-surface distance between the QD and the substrate. The amplitude

Ael is [4]

Ael =
8dQD
λB

tanh

(
eψQD
4kBT

)
tanh

(
eψs

4kBT

)
, (S3)

where ψQD and ψs are the surface potentials of the quantum dot and the substrate. Surface

potentials are related to surface charge densities σα (α = {QD, s}) by the Grahame equation

σα =
√

8ε0εrkBTρ sinh

(
eψα

2kBT

)
. (S4)

For surface potentials below the thermal voltage, ψα � 2kBT/e, eq. S4 gives

σα ≈ ε0εrψα/λD. (S5)
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For low surface potentials, eq. S3 thus becomes

Ael = 8π2dQDλ
2
DλBσQDσs/e

2. (S6)

Thus, the strength of the electrostatic repulsion increases rapidly with increasing λD.

Figure 1b,c (main text) shows that for a fixed correlation length (ξ = 5 nm), the effect of λD

on the surface coverage is moderate, implying rather week electrostatic repulsion and low

surface charge densities.

To demonstrate the effect of the Debye screening length on the total interaction potential,

we used the following parameters to produce Fig. 3c of the main text: Bjerrum length

λB = 8 nm (corresponding to εr = 7 of water-lutidine [5]), QD diameter dQD = 5.5 nm and

the product of the surface charge densities σQDσs = 1.5× 10−6 e2/nm4.
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S3. CRITICAL CASIMIR INTERACTIONS

We have used Monte Carlo simulations of the Ising model to calculate critical Casimir

interactions between a quantum dot and a substrate and between two quantum dots at

a substrate. The Ising model mimics an incompressible binary liquid mixture or a simple

fluid. MC simulations of this model is a reliable and computationally feasible tool to compute

critical Casimir potentials in the proximity of criticality.

A. Monte Carlo simulations

The Hamiltonian of the Ising model is given by

H({s}) = −J
∑
〈ij〉

sisj − h
∑
i

si, (S7)

where J is the coupling constant, si = ±1 is a classical spin at lattice site i, corresponding

to the occupation of site i by one or another species of a binary liquid mixture, and h is

the external ‘magnetic’ bulk field, corresponding to the difference in the chemical potentials

of two species. The sum 〈ij〉 runs over all neighboring pairs of spins. The spins belonging

to the interior of the QD and the substrate were frozen and set to the values dictated by

the boundary conditions. We considered hydrophilic QDs and hydrophilic substrates (i.e.,

the same values of the spin, say s = −1) as well as hydrophobic substrates (s = +1) with

a hydrophilic patch (s = −1 within the patch). The summation in eq. S7 runs only over

non-frozen lattice sites, corresponding to the space accessible to the binary mixture. The

critical Casimir interaction potential was computed by using the local field approach [7, 8].

In all simulations, the system size was Lx × Ly × Lz = 50 × 50 × 80 lattice units in the

x, y and z directions, respectively. Periodic boundary conditions were applied in the x and

y directions; the spins were fixed at the bottom substrate (z = 0), as described above, and

free boundary conditions were applied at the top surface at z = Lz (i.e., the spins on that

surface were allowed to fluctuate). The QD diameter was 11 lattice sites. The averaging

was performed over 5× 106 hybrid Mont Carlo steps [9] with preliminary thermalization of

5× 105 MC steps.

To extracted the decay length λCas (≈ ξ) of the critical Casimir potential UCas, we fitted
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FIG. S5. Magnetization m and constant m path. Bulk magnetization as a function

of the reduced temperature τ = (T − Tc)/Tc, where Tc is the critical point, obtained by

Monte Carlo simulations of the Ising model in bulk (no substrates or colloids). The horizon-

tal dashed line shows the thermodynamic path taken to calculate the critical Casimir poten-

tials. The corresponding points for the chosen magnetic fields are marked by symbols and

read (h, t) ≈ (0.001, 0.002), (0.002, 0.009), (0.005, 0.028), and (0.01, 0.057) for m = 0.3 and

(h, t) ≈ (0.001, 0.011), (0.002, 0.022), (0.005, 0.051), and (0.01, 0.096) for m = 0.2.

the MC data with the following function

UCas(D) =
ACas

D + a
e−D/λCas , (S8)

where D is the surface-to-surface distance, parameter a describes a non-universal behavior

at short separations and ACas is a constant.

B. Thermodynamic path

In the experiments (Section S1), the molar fraction of water-lutidine was kept off-critical

and the temperature was varied to approach the water-lutidine separation temperature. To

mimic this thermodynamic path, we performed MC simulations and computed the critical

Casimir potentials at a constant average magnetization m = 〈s〉. To this end, we first

simulated a bulk system for various bulk magnetic fields and temperatures. The result is



9

shown in Fig. S5, which shows the magnetization as a function of the reduced temperature

τ = (T −Tc)/Tc for a few values of the magnetic field h. The critical Casimir potentials were

then computed for the values of the bulk magnetic field h and the reduced temperature τ

that provide the bulk magnetization m = 0.2 (Fig. 2 in the main text) and m = 0.3 (Fig. 4

in the main text).
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FIG. S6. Two cubo-spherical particles on a substrate. (a) Forces and torques acting between

two cubo-spherical particles attached to a substrate. Green vectors are the directions to the two

closest points of the surfaces; these points are denoted by red circles. (b) More detailed view o the

near-contact area.

S4. ORDERING OF CUBO-SPHERICAL PARTICLES

To study how the shape of quantum dots affects the deposited structure, we have inves-

tigated ordering of cubo-spherical particles with the shape given by eq. 1 of the main text.

Although this equation describes a three-dimensional object (see Fig. 1d of the main text),

we studied ordering of such particles deposited on a substrate, with the particles’ facets lay-

ing on the substrate. This is effectively a two-dimensional system of particles with the shape

intermediate between a circle and a square. However, the electrostatic and critical Casimir

forces acting between the particles were computed in three-dimensions, albeit for spheri-

cal particles inscribed into the corresponding cubo-sphere; the details of these interaction

potentials are provided in Section S2 A and S3.

To take into account the particle shape, on can proceed as follows:

1. Identify two points of the closest approach on the two surfaces (red dots in Fig. S6) and

radius-vectors to them from the centers of each particle (green vectors); the distance

between these points is r12.

2. Compute the repulsive force, which we chose to be
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FIG. S7. Optimal lattice of cubo-spherical particles deposited on a substrate. (a) Energy

per unit cell as a function of parameter α (eq. 1 of the main text) for a square and hexagonal lattice.

Examples of (b) hexagonal and (c) square ordering for α = 2.75 (vertical line in (a)).

Urep(r12) =
Arep

r712
(S9)

with βArep = 1.78× 10−8 (as in ref. 10)

3. Repulsive forces act along the line r12 between these two closest point. Torques for

these forces were computed with respect to the appropriate arms (green vectors in

Fig. S6).

A. Energy minimization

We first computed the total energy for the system of cubo-spherical particles forming a

square and a hexagonal lattice. We considered the separation between the particles as an

optimization parameter but, for simplicity, we fixed the orientation of the particles such that

the particles’ facets face each other. Within this setup, the energy per unit cell, E , for the

square lattice does not depend on parameter α (eq. 1 of the main text). To find E for the

hexagonal lattice, we wrote a computer program to minimize the energy over the cell size.



12

0:2

0:3

0:4

0:5

0 5 10 15 20 25 30

A B

O
rd

er
pa

ra
m

et
er
 
n

Debye length, –D (nm)

 4

 6

0:2

0:3

0:4

0:5

0 5 10 15 20 25 30

A B

FIG. S8. Transformation between hexagonal and quadratic ordering induced by the

Debye screening length. The top plot shows the square and hexatic order parameters (eq. S10

as functions of the Debye length, obtained by 2D molecular dynamics (MD) simulations, and

the bottom plot shows two snapshots from the MD simulations. The critical Casimir potential

between QDs was computed in the presence of a hydrophilic substrate for the reduced temperature

τ = (T − Tc)/Tc = 0.007 and bulk magnetic field of the Ising model h = 0.01. The electrostatic

potential was calculated according to eq. S1. The critical Casimir and electrostatic interactions

were computed for a spherical particle inscribed in the cubo-sphere with α = 3 (eq. 1 of the main

text).

We consider here a typical example: the Debye screening length λD = 0.25dQD and

the critical Casimir potential computed for the reduced temperature τ = 0.007 and bulk

magnetic field h = 0.01 (see Section S2 A and S3). The results of the calculations are

shown in Fig. S7, which demonstrates that the square lattice is energetically favourable for

α > α0 ≈ 2.71.
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B. Molecular dynamics simulations

We have also performed 2D molecular dynamics simulations of deposited cubo-spherical

particles. We used our own computer program, as in ref. 10, but we had to include rotations

because the particles are not spherically symmetric. For stability the rotational inertia

(inertia with respect to rotations) had to be increased with respect to the moment of inertia

of a sphere. The rotational friction coefficient was also increased. In these simulations we

used the critical Casimir potential computed for the reduced temperature τ = 0.007 and

bulk magnetic field of the Ising model h = 0.01 in the presence of a hydrophilic substrate

(Section S3). The critical Casimir and electrostatic potentials were calculated for a sphere

inscribed in a cubo-spherical particle with given α.

C. Order parameters for 2D ordering

To quantify structures obtained from 2D molecular dynamics simulations, we computed

the order parameters

ψk =

〈
N∑
i

ψk(i)

〉
, (S10)

where N is the total number of nanoparticles in a simulation box, 〈· · · 〉 means thermal

average and

ψk(i) =
1

ni

ni∑
j=1

cos(kθj,i,j+1) (S11)

with ni being the number of neighbors of the ith particle and θj,i,j+1 the angle between

particles i, j and j+1. We calculated ψ4 (= 1 for a perfect square) and ψ6 (= 1 for a perfect

hexagonal lattice) within all clusters of nanoparticles; a particle was considered part of a

cluster if the distance to at least one of the cluster’s particles was smaller than 2.5 of the

particle radius [10].
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