Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Information

Strong Proton Shared Hydrogen Bonding in Methyl Imidazole-HCl Complex: Evidence from Matrix Isolation Infrared Spectroscopy and *Ab initio* Computations

Shubhra Sarkar, P. K. Sruthi, N. Ramanathan* and K. Sundararajan

Materials Chemistry & Metal Fuel Cycle Group, Homi Bhabha National Institute, Indira Gandhi Center for Atomic Research, Kalpakkam – 603 102, Tamil Nadu, India

Figure S1. Matrix isolation infrared spectra of co-deposition experiments of M-Imid and HCl precursors in N₂ matrix. Trace 'a') M-Imid:N₂ (2:1000) as deposited at 12 K; Trace 'b') M-Imid:N₂ (2:1000) at 12 K after annealing at 30 K; Trace 'c', 'd' and 'e' are as a result of the codeposition experiments of HCl/M-Imid/N₂. Trace 'c'): 12 K; Trace 'd'): 25 K – 12 K; Trace 'e'): 32 K – 12 K. The feature marked with asterisk is due to H-Cl stretching of proton shared hydrogen bonded complex.

Figure S2. Matrix isolation infrared spectra of co-deposition experiments of M-Imid and HCl precursors in Ar matrix have been depicted. Trace 'a') M-Imid:N₂ (2:1000) as deposited at 12 K; Trace 'b') M-Imid:Ar (2:1000) at 12 K after annealing at 30 K; Trace 'c', 'd' and 'e' are as a result of the co-deposition experiments of HCl/M-Imid/N₂. Trace 'c'): 12 K; Trace 'd'): 25 K – 12 K; Trace 'e'): 32 K – 12 K. The feature marked with asterisk is due to H-Cl stretching of proton shared hydrogen bonded complex.

Table S1. Results of energy decomposition analysis performed on the complexes A, B and C at B3LYP-D3/TZ2P level of theory For comparison, the results of NH_3 -HCl, Pyridine-HCl and $N(CH_3)_3$ -HCl are also shown.

Complexes	Energy decomposition in kcal/mol					
	Electrostatic	Charge-transfer	Dispersion	Pauli repulsion	Total binding energy	
complex A	-25.99	-22.76	-1.74	+36.91	-13.58	
complex B	-6.08	-4.85	-3.53	+9.29	-5.17	
complex C	-2.19	-1.15	-1.57	+3.51	-1.40	
NH ₃ -HCl	-20.17	-16.25	-1.15	+26.99	-10.58	
Pyridine-HCl	-27.31	-25.12	-2.00	+41.13	-13.3	

Table S2. Results on binding energy and calculated N···H···Cl vibrational frequency (cm⁻¹) as a result of substitution of electron withdrawing and donating groups on to the C1 carbon (flanked by two nitrogen atoms in imidazole ring) and C4 carbon are provided.

Effect of substitution in	Binding energy	Calculated N…H…Cl	Shift with respect to HCl			
M-Imid HCl Complexes	(kcal/mol)	vibrational frequency (cm ⁻¹)	monomer			
Substitution at C1 carbon						
-NO ₂	-8.45	2513.1 (1889)	-510.0			
-CN	-8.62	2408.6 (2338)	-614.5			
-H (complex A)	-12.66	1960.9 (3938)	-1062.2			
-CH ₃	-17.78	1261.2 (2340)	-1761.9			
-NH ₂	-62.71	2323.1 (2553) ^a				
-OH	-111.97	3285.9 (901) ^a				
Substitution at C4 carbon						
-NO ₂	-8.32	2530.3 (1740)	-492.7			
-CN	-8.51	2442.7 (2050)	-580.3			
-H (complex A)	-12.66	1960.9 (3938)	-1062.1			
-CH ₃	-14.32	1739.5 (3952)	-1283.5			
-NH ₂	-16.24	1322.3 (3002)	-1700.7			
-ОН	-66.23	2519.3 (1578) ^a				

^aproton transferred hydrogen bonding

Table S3. Results on binding energy and calculated N···H···Cl vibrational frequency (cm⁻¹) as a result of substitution of electron withdrawing and donating groups on to the N8 nitrogen and C6 carbon are provided.

Effect of substitution in	Calculated N…H…Cl	Shift with respect to HCl					
M-Imid-HCl Complexes	vibrational frequency (cm ⁻¹)	monomer					
Substitution at N8 nitrogen							
-NO ₂	2410.8 (2506)	-612.2					
-CN	2445.1 (2380)	-577.9					
-CH ₃ (complex A)	1960.9 (3938)	-1062.1					
-H	2071.9 (3447)	-951.1					
-NH ₂	2052.2 (3695)	-970.8					
-OH	2142.6 (3340)	-880.4					
Substitution at C6 carbon							
-NO ₂	2371.1 (2745)	-651.9					
-CN	2321.3 (3012)	-701.7					
-H (complex A)	1960.9 (3938)	-1062.1					
-CH ₃	1825.9 (4462)	-1197.1					
-NH ₂	1836.2 (4413)	-1186.8					
-OH	1949.5 (3969)	-1073.5					