Supplementary Information

New Journal of Chemistry

(Manuscript ID NJ-ART-01-2020-00005)

Dinuclear cobalt complexes supported by biphenol and binaphthol-derived bis (salicylaldimine) ligands: Synthesis, characterization and catalytic application in β-enaminones synthesis from 1,3-dicarbonyl compounds and Aliphatic amines

Dr. Adelew Estifanos Filkalea,∗ Dr. Chandni Pathakb

aDepartment of Chemistry, College of Computational & Natural Sciences, Hawassa University, P.O. Box,05, Ethiopia
bDepartment of Applied Chemistry, Jabalpur Engineering College, Jabalpur, M.P.,

Table of Contents

Table 1S. Solvent variation study for the β-enaminone reaction of acetyl acetone and methyl amine as catalyzed by the dinuclear [CoL1]2 (2) and [CoL2]2 (4) complexes ______6
Table 2S. Time variation study for the β-enaminone reaction of acetyl acetone and methyl amine as catalyzed by the dinuclear [CoL1]2 (2) and [CoL2]2 (4) complexes. ____________7
Table 3S. Selected results of blank, control and mercury drop experiments for the β-enaminone reaction of acetyl acetone and methylamine as catalyzed by the dinuclear [CoL1]2 (2) and [CoL2]2 (4) complexesa. ___8
Fig. S1 1H NMR spectrum of 1 in CDCl3. ___9
Fig. S2 Expanded 1H NMR spectrum of 1 in CDCl3.________________________________10
Fig. S3 13C(1H) NMR spectrum of 1 in CDCl3._____________________________________11
Fig. S4 Infrared spectrum of 1 in KBr. __12
Fig. S5 High Resolution Mass Spectrometry (HRMS) data of 1.______________________13
Fig. S6 Elemental analysis data of 1.__14
Fig. S7 Infrared spectrum of 2 in KBr. __15
Table 4S. Important IR bands of 1(H2L1) and 3 (H2L2) dinuclear complexes 2 and 4 ____16
Table 5S. UV–Visible spectra of 1, 2, 3 and 4 __17
Fig. S8 High Resolution Mass Spectrometry (HRMS) data of 2._______________________18
Fig. S9 Elemental analysis data of 2.__19
Fig. S10 1H NMR spectrum of 3 in CDCl$_3$.__20

Fig S11 Expanded 1H NMR spectrum of 3 in CDCl$_3$.________________________________21

Fig. S12 13C(1H) NMR spectrum of 3 in CDCl$_3$._________________________________22

Fig S13 Expanded 13C(1H) NMR spectrum of 3 in CDCl$_3$.____________________23

Fig. S14 Infrared spectrum of 3 in KBr.__24

Fig. S15 High Resolution Mass Spectrometry (HRMS) data of 3.______________________25

Fig. S16 Elemental analysis data of 3.__26

Fig. S17 Infrared spectrum of 4 in KBr.___27

Fig. S18 High Resolution Mass Spectrometry (HRMS) data of 4.______________________28

Fig. S19 Elemental analysis data of 4.__29

Fig. S20 1H NMR spectrum of 5 in CDCl$_3$ formed in the reaction of acetyl acetone and methyl amine as catalyzed by the dinuclear [CoL$_1$]$_2$(2) and [CoL$_2$]$_2$(4) complexes. ______30

Fig. S21 Expanded 1H NMR spectrum of 5 in CDCl$_3$ formed in the reaction of acetyl acetone and methyl amine as catalyzed by the dinuclear [CoL$_1$]$_2$(2) and [CoL$_2$]$_2$(4) complexes.____31

Fig. S22 13C(1H) NMR spectrum of 5 in CDCl$_3$ formed in the reaction of acetyl acetone and methyl amine as catalyzed by the dinuclear [CoL$_1$]$_2$(2) and [CoL$_2$]$_2$(4) complexes.______32

Fig. S23 GCMS trace of 5 (m/z 113) in EtOAc formed in the reaction of acetyl acetone and methyl amine as catalyzed by the dinuclear [CoL$_1$]$_2$(2) and [CoL$_2$]$_2$(4) complexes. ___33

Fig. S24 Elemental analysis data of 5 formed in the reaction of acetyl acetone and methyl amine as catalyzed by the dinuclear [CoL$_1$]$_2$(2) and [CoL$_2$]$_2$(4) complexes.________34

Fig. S25 1H NMR spectrum of 6 in CDCl$_3$ formed in the reaction of acetyl acetone and ethyl amine as catalyzed by the dinuclear [CoL$_1$]$_2$(2) and [CoL$_2$]$_2$(4) complexes.________35

Fig. S26 Expanded 1H NMR spectrum of 6 in CDCl$_3$ formed in the reaction of acetyl acetone and ethyl amine as catalyzed by the dinuclear [CoL$_1$]$_2$(2) and [CoL$_2$]$_2$(4) complexes. ___36

Fig. S27 13C(1H) NMR spectrum of 6 in CDCl$_3$ formed in the reaction of acetyl acetone and ethyl amine as catalyzed by the dinuclear [CoL$_1$]$_2$(2) and [CoL$_2$]$_2$(4) complexes._______37

Fig. S28 GCMS trace of 6 (m/z 127) in EtOAc formed in the reaction of acetyl acetone and ethyl amine as catalyzed by the dinuclear [CoL$_1$]$_2$(2) and [CoL$_2$]$_2$(4) complexes._____38

Fig. S29 1H NMR spectrum of 7 in CDCl$_3$ formed in the reaction of acetyl acetone and n-propyl amine as catalyzed by the dinuclear [CoL$_1$]$_2$(2) and [CoL$_2$]$_2$(4) complexes._______39

Fig. S30 Expanded 1H NMR spectrum of 7 in CDCl$_3$ formed in the reaction of acetyl acetone and n-propyl amine as catalyzed by the dinuclear [CoL$_1$]$_2$(2) and [CoL$_2$]$_2$(4) complexes. ___40

Fig. S31 13C(1H) NMR spectrum of 7 in CDCl$_3$ formed in the reaction of acetyl acetone and ethyl amine as catalyzed by the dinuclear [CoL$_1$]$_2$(2) and [CoL$_2$]$_2$(4) complexes._______41
Fig. S32 GCMS trace of 7 (m/z 141) in EtOAc formed in the reaction of acetyl acetone and n-propyl amine as catalyzed by the dinuclear [CoL\(^1\)]\(^2\) (2) and [CoL\(^2\)]\(^2\) (4) complexes. 42

Fig.S33 ^1^H NMR spectrum of 8 in CDCl\(_3\) formed in the reaction of acetyl acetone and i-propyl amine as catalyzed by the dinuclear [CoL\(^1\)]\(^2\) (2) and [CoL\(^2\)]\(^2\) (4) complexes. 43

Fig. S34 Expanded ^1^H NMR spectrum of 8 in CDCl\(_3\) formed in the reaction of acetyl acetone and i-propyl amine as catalyzed by the dinuclear [CoL\(^1\)]\(^2\) (2) and [CoL\(^2\)]\(^2\) (4) complexes. 44

Fig. S35 13C{^1^H} NMR spectrum of 8 in CDCl\(_3\) formed in the reaction of acetyl acetone and ethyl amine as catalyzed by the dinuclear [CoL\(^1\)]\(^2\) (2) and [CoL\(^2\)]\(^2\) (4) complexes 45

Fig. S36 GCMS trace of 8 (m/z 141) in EtOAc formed in the reaction of acetyl acetone and i-propyl amine as catalyzed by the dinuclear [CoL\(^1\)]\(^2\) (2) and [CoL\(^2\)]\(^2\) (4) complexes. 46

Fig. S37 ^1^H NMR spectrum of 9 in CDCl\(_3\) formed in the reaction of acetyl acetone and n-butyl amine as catalyzed by the dinuclear [CoL\(^1\)]\(^2\) (2) and [CoL\(^2\)]\(^2\) (4) complexes. 47

Fig. S38 Expanded ^1^H NMR spectrum of 9 in CDCl\(_3\) formed in the reaction of acetyl acetone and n-butyl amine as catalyzed by the dinuclear [CoL\(^1\)]\(^2\) (2) and [CoL\(^2\)]\(^2\) (4) complexes 48

Fig. S39 13C{^1^H} NMR spectrum of 8 in CDCl\(_3\) formed in the reaction of acetyl acetone and ethyl amine as catalyzed by the dinuclear [CoL\(^1\)]\(^2\) (2) and [CoL\(^2\)]\(^2\) (4) complexes. 49

Fig. S40 GCMS trace of 9 (m/z 155) in EtOAc formed in the reaction of acetyl acetone and n-butyl amine as catalyzed by the dinuclear [CoL\(^1\)]\(^2\) (2) and [CoL\(^2\)]\(^2\) (4) complexes. 50

Fig. S41 ^1^H NMR spectrum of 10 in CDCl\(_3\) formed in the reaction of acetyl acetone and 2-picoly amine as catalyzed by the dinuclear [CoL\(^1\)]\(^2\) (2) and [CoL\(^2\)]\(^2\) (4) complexes. 51

Fig. S42 Expanded ^1^H NMR spectrum of 10 in CDCl\(_3\) formed in the reaction of acetyl acetone and 2-picoly amine as catalyzed by the dinuclear [CoL\(^1\)]\(^2\) (2) and [CoL\(^2\)]\(^2\) (4) complexes. 52

Fig. S43 13C{^1^H} NMR spectrum of 10 in CDCl\(_3\) formed in the reaction of acetyl acetone and ethyl amine as catalyzed by the dinuclear [CoL\(^1\)]\(^2\) (2) and [CoL\(^2\)]\(^2\) (4) complexes. 53

Fig. S44 GCMS trace of 10 (m/z 190) in EtOAc formed in the reaction of acetyl acetone and 2-picoly amine as catalyzed by the dinuclear [CoL\(^1\)]\(^2\) (2) and [CoL\(^2\)]\(^2\) (4) complexes. 54

Fig. S45 ^1^H NMR spectrum of 11 in CDCl\(_3\) formed in the reaction of acetyl acetone and 2-picoly amine as catalyzed by the dinuclear [CoL\(^1\)]\(^2\) (2) and [CoL\(^2\)]\(^2\) (4) complexes. 55

Fig. S46 Expanded ^1^H NMR spectrum of 11 in CDCl\(_3\) formed in the reaction of acetyl acetone and 2-picoly amine as catalyzed by the dinuclear [CoL\(^1\)]\(^2\) (2) and [CoL\(^2\)]\(^2\) (4) complexes. 56

Fig. S47 13C{^1^H} NMR spectrum of 11 in CDCl\(_3\) formed in the reaction of acetyl acetone and ethyl amine as catalyzed by the dinuclear [CoL\(^1\)]\(^2\) (2) and [CoL\(^2\)]\(^2\) (4) complexes. 57
Fig. S48 GCMS trace of 11 (m/z 183) in EtOAc formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and ethyl amine as catalyzed by the dinuclear [CoL1]2(2) and [CoL2]2(4) complexes.

Fig. S49 Elemental analysis data of 11 formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and ethyl amine as catalyzed by the dinuclear [CoL1]2(2) and [CoL2]2(4) complexes.

Fig. S50 1H NMR spectrum of 12 in CDCl3 formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and n-propyl amine as catalyzed by the dinuclear [CoL1]2(2) and [CoL2]2(4) complexes.

Fig. S51 Expanded 1H NMR spectrum of 12 in CDCl3 formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and n-propyl amine as catalyzed by the dinuclear [CoL1]2(2) and [CoL2]2(4) complexes.

Fig. S52 13C{1H} NMR spectrum of 12 in CDCl3 formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and n-propyl amine as catalyzed by the dinuclear [CoL1]2(2) and [CoL2]2(4) complexes.

Fig. S53 GCMS trace of 12 (m/z 197) in EtOAc formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and n-propyl amine as catalyzed by the dinuclear [CoL1]2(2) and [CoL2]2(4) complexes.

Fig. S54 Elemental analysis data of 12 formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and n-propyl amine as catalyzed by the dinuclear [CoL1]2(2) and [CoL2]2(4) complexes.

Fig. S55 1H NMR spectrum of 13 in CDCl3 formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and i-propyl amine as catalyzed by the dinuclear [CoL1]2(2) and [CoL2]2(4) complexes.

Fig. S56 Expanded 1H NMR spectrum of 13 in CDCl3 formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and i-propyl amine as catalyzed by the dinuclear [CoL1]2(2) and [CoL2]2(4) complexes.

Fig. S57 13C{1H} NMR spectrum of 13 in CDCl3 formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and i-propyl amine as catalyzed by the dinuclear [CoL1]2(2) and [CoL2]2(4) complexes.

Fig. S58 GCMS trace of 13 (m/z 197) in EtOAc formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and i-propyl amine as catalyzed by the dinuclear [CoL1]2(2) and [CoL2]2(4) complexes.

Fig. S59 Elemental analysis data of 13 formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and i-propyl amine as catalyzed by the dinuclear [CoL1]2(2) and [CoL2]2(4) complexes.

Fig. S60 1H NMR spectrum of 14 in CDCl3 formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and n-butyl amine as catalyzed by the dinuclear [CoL1]2(2) and [CoL2]2(4) complexes.
Fig. S61 Expanded 1H NMR spectrum of 14 in CDCl$_3$ formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and n-butyl amine as catalyzed by the dinuclear [CoL1]$_2$ (2) and [CoL2]$_2$ (4) complexes.

Fig. S62 13C(1H) NMR spectrum of 14 in CDCl$_3$ formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and n-butyl amine as catalyzed by the dinuclear [CoL$_1$]$_2$ (2) and [CoL$_2$]$_2$ (4) complexes.

Fig. S63 GCMS trace of 14 (m/z 211) in EtOAc formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and n-butyl amine as catalyzed by the dinuclear [CoL$_1$]$_2$ (2) and [CoL$_2$]$_2$ (4) complexes.

Fig. S64 Elemental analysis data of 14 formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and n-butyl amine as catalyzed by the dinuclear [CoL$_1$]$_2$ (2) and [CoL$_2$]$_2$ (4) complexes.

Fig. S65 1H NMR spectrum of 5 in CDCl$_3$ formed in the reaction of acetyl acetone and methyl amine.

Fig. S66 GCMS trace of 5 (m/z 113) in EtOAc formed in the reaction of acetyl acetone and methyl amine.

Fig. S67 1H NMR spectrum of 5 in CDCl$_3$ formed in the reaction of acetyl acetone and methyl amine as catalyzed by Co(OAc)$_2$•4H$_2$O.

Fig. S68 GCMS trace of 5 (m/z 113) in EtOAc formed in the reaction of acetyl acetone and methyl amine as catalyzed by Co(OAc)$_2$•4H$_2$.

Fig. S69 1H NMR spectrum of 5 in CDCl$_3$ formed in the reaction of acetyl acetone and methyl amine as catalyzed by H$_2$L$_1$ (1).

Fig. S70 GCMS trace of 5 (m/z 113) in EtOAc formed in the reaction of acetyl acetone and methyl amine as catalyzed by H$_2$L$_1$ (1).

Fig. S71 1H NMR spectrum of 5 in CDCl$_3$ formed in the reaction of acetyl acetone and methyl amine as catalyzed by H$_2$L$_2$ (3).

Fig. S72 1H NMR spectrum of 5 in CDCl$_3$ formed in the reaction of acetyl acetone and methyl amine as catalyzed by the dinuclear [CoL$_1$]$_2$ (2) and [CoL$_2$]$_2$ (4) complexes in the presence of Hg.

Fig. S73 GCMS trace of 5 (m/z 113) in EtOAc formed in the reaction of acetyl acetone and methyl amine as catalyzed by the dinuclear [CoL$_1$]$_2$ (2) and [CoL$_2$]$_2$ (4) complexes in the presence of Hg.
Table 1S. Solvent variation study for the β-enaminone reaction of acetyl acetone and methyl amine as catalyzed by the dinuclear [CoL1]2 (2) and [CoL2]2 (4) complexes

\[
\begin{align*}
\text{O} & \quad \text{O} \\
& \quad \text{Me} \text{NH}_2 \\
\longrightarrow & \quad \text{2/4} \\
& \quad \text{solvent, RT, 6 h} \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>S.No</th>
<th>Solvent</th>
<th>(2)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CHCl₃</td>
<td>89</td>
<td>76</td>
</tr>
<tr>
<td>2</td>
<td>CH₂Cl₂</td>
<td>75</td>
<td>71</td>
</tr>
<tr>
<td>3</td>
<td>THF</td>
<td>93</td>
<td>89</td>
</tr>
<tr>
<td>4</td>
<td>DMSO</td>
<td>86</td>
<td>77</td>
</tr>
<tr>
<td>5</td>
<td>DMF</td>
<td>63</td>
<td>65</td>
</tr>
</tbody>
</table>

(a). Reaction conditions: 1.00 mmol of ketone, 4.0 mmol of amine, 1 mol % of catalyst (2/4), 2.5 mL of solvent at room temperature, stir for 6 h. (b) Isolated yields (%).
Table 2S. Time variation study for the β-enaminone reaction of acetyl acetone and methyl amine as catalyzed by the dinuclear [CoL1]2 (2) and [CoL2]2 (4) complexes.

\[
\begin{align*}
\text{Ketone} + \text{Me-NH}_2 & \xrightarrow{2/4} \text{THF, RT, 6 h} \quad \text{HNMe} \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>S.No</th>
<th>Time (h)</th>
<th>Yield (2)</th>
<th>Yield (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>63</td>
<td>59</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>78</td>
<td>63</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>83</td>
<td>78</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>93</td>
<td>89</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>90</td>
<td>85</td>
</tr>
</tbody>
</table>

(a). Reaction conditions: 1.00 mmol of ketone, 4.0 mmol of amine, 1 mol % of catalyst (2/4), 2.5 mL of THF at room temperature, stir for the given time. (b). Isolated yields (%).
Table 3S. Selected results of blank, control and mercury drop experiments for the β-enaminone reaction of acetyl acetone and methylamine as catalyzed by the dinuclear [CoL1]2 (2) and [CoL2]2 (4) complexes.

![Chemical structure](image)

<table>
<thead>
<tr>
<th>S.No</th>
<th>Catalyst</th>
<th>Yield(^b)</th>
<th>Hg/Yield(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(2)(^a)</td>
<td>93</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>(4)(^a)</td>
<td>89</td>
<td>87</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Co(OAc)(_2)•4H(_2)O</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>H(_2)L(_1) (1)</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>H(_2)L(_2) (3)</td>
<td>67</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\). Reaction conditions: 1.00 mmol of ketone, 4.0 mmol of amine, 1 mol % of catalyst (2/4) or 2 mol % of Co(OAc)\(_2\)•4H\(_2\)O/H\(_2\)L\(_1\)/H\(_2\)L\(_2\), 2.5 mL of THF at room temperature, stir for 6 h.
\(^b\). Isolated yields (%).
Fig. S1 1H NMR spectrum of 1 in CDCl3.
Fig. S2 Expanded 1H NMR spectrum of 1 in CDCl$_3$.
Fig. S3 13C{¹H} NMR spectrum of 1 in CDCl₃.
Fig. S4 Infrared spectrum of 1 in KBr.
Fig. S5 High Resolution Mass Spectrometry (HRMS) data of 1.
Eager 300 Report

Page: 1
Sample: PG-AE-2-27-1 (PG-AE-2-27-1)

- **Method Name:** PGCP16052016
- **Method File:** D:\CHNS2016\PGCP16052016.mth
- **Chromatogram:** PG-AE-2-27-1
- **Operator ID:** CHANDNI
- **Company Name:** C.E. Instruments
- **Analysed:** 05/16/2016 12:53
- **Printed:** 05/17/2016 10:26
- **Sample ID:** PG-AE-2-27-1 (# 13)
- **Instrument N.:** Instrument #1
- **Analysis Type:** UnkNown (Area)
- **Sample weight:** .751

Calib. method: using 'K Factors'

!!! Warning missing one or more peaks.

<table>
<thead>
<tr>
<th>Element Name</th>
<th>%</th>
<th>Ret.Time</th>
<th>Area</th>
<th>BC</th>
<th>Area ratio</th>
<th>K factor</th>
<th>(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0000</td>
<td>2</td>
<td>31480 FU</td>
<td></td>
<td></td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.0000</td>
<td>6</td>
<td>99279 FU</td>
<td></td>
<td></td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Nitrogen</td>
<td>5.9177</td>
<td>43</td>
<td>47966 RS</td>
<td>33.450400</td>
<td>.107929E+07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon</td>
<td>80.8003</td>
<td>65</td>
<td>1604465 RS</td>
<td>1.000000</td>
<td>.264014E+07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen</td>
<td>5.9919</td>
<td>178</td>
<td>336173 RS</td>
<td>4.772736</td>
<td>.705507E+07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>92.7099</td>
<td></td>
<td>2119363</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. S6 Elemental analysis data of 1.
Fig. S7 Infrared spectrum of 2 in KBr.
Table 4S. Important IR bands of 1(H$_2$L$_1$) and 3 (H$_2$L$_2$) dinuclear complexes 2 and 4

<table>
<thead>
<tr>
<th>Compound</th>
<th>ν(O–H)$_{H_2O}$ (cm$^{-1}$)</th>
<th>ν(C=N) (cm$^{-1}$)</th>
<th>ν(C–O) (cm$^{-1}$)</th>
<th>ν(C=C) (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_2$L$_1$(1)</td>
<td>3440</td>
<td>1618</td>
<td>1203</td>
<td>1427</td>
</tr>
<tr>
<td>2</td>
<td>3446</td>
<td>1599</td>
<td>1143</td>
<td>1421</td>
</tr>
<tr>
<td>H$_2$L$_2$(3)</td>
<td>3386</td>
<td>1623</td>
<td>1255</td>
<td>1449</td>
</tr>
<tr>
<td>4</td>
<td>3451</td>
<td>1620</td>
<td>1254</td>
<td>1457</td>
</tr>
<tr>
<td>Compound</td>
<td>λmax, nm</td>
<td>absorbance</td>
<td>ε, M⁻¹cm⁻¹</td>
<td>transition</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>H₂L¹ (1)</td>
<td>236</td>
<td>3.5</td>
<td>52000</td>
<td>π → π*</td>
</tr>
<tr>
<td></td>
<td>341</td>
<td>1.7</td>
<td>25000</td>
<td>n→ π*</td>
</tr>
<tr>
<td>2</td>
<td>230</td>
<td>1.22</td>
<td>18000</td>
<td>π → π*</td>
</tr>
<tr>
<td></td>
<td>280</td>
<td>0.54</td>
<td>8000</td>
<td>n→ π*</td>
</tr>
<tr>
<td></td>
<td>393</td>
<td>0.26</td>
<td>4000</td>
<td>d→π*</td>
</tr>
<tr>
<td>H₂L² (3)</td>
<td>244</td>
<td>0.23</td>
<td>3400</td>
<td>π → π*</td>
</tr>
<tr>
<td></td>
<td>342</td>
<td>0.11</td>
<td>1600</td>
<td>n→ π*</td>
</tr>
<tr>
<td>4</td>
<td>260</td>
<td>0.97</td>
<td>14000</td>
<td>π → π*</td>
</tr>
<tr>
<td></td>
<td>306</td>
<td>0.33</td>
<td>4900</td>
<td>n→ π*</td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>0.21</td>
<td>3100</td>
<td>d→π*</td>
</tr>
</tbody>
</table>
Fig. S8 High Resolution Mass Spectrometry (HRMS) data of 2.
Fig. S9 Elemental analysis data of 2.
Fig. S10 1H NMR spectrum of 3 in CDCl$_3$.
Fig S11 Expanded 1H NMR spectrum of 3 in CDCl$_3$.
Fig. S12 13C{^1}H} NMR spectrum of 3 in CDCl$_3$.
Fig S13 Expanded 13C\{1H\} NMR spectrum of 3 in CDCl$_3$.
Fig.S14 Infrared spectrum of 3 in KBr.
Fig. S15 High Resolution Mass Spectrometry (HRMS) data of 3.
Eager 300 Report

Page: 1 Sample: PG-AE-1-86-2 (PG-AE-1-86-2)

Method Name : SP-230712
Method File : D:\CHNS2012\SP-230712.mth
Chromatogram : PG-AE-1-86-2
Operator ID : MNRAO
Analysed : 07/23/2012 15:16
Sample ID : PG-AE-1-86-2 (# 9)
Analysis Type : UnkNown (Area)

Calib. method: using 'K Factors'

!!! Warning missing one or more peaks.

<table>
<thead>
<tr>
<th>Element Name</th>
<th>Ret.Time</th>
<th>Area</th>
<th>BC</th>
<th>Area ratio</th>
<th>K factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen</td>
<td>4.5275</td>
<td>43</td>
<td>45902 RS</td>
<td>32.170660</td>
<td>905300.9000</td>
</tr>
<tr>
<td>Carbon</td>
<td>8.6678</td>
<td>67</td>
<td>1476682 RS</td>
<td>1.000000</td>
<td>.242139E+07</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>6.6426</td>
<td>175</td>
<td>290366 RS</td>
<td>5.085596</td>
<td>.578213E+07</td>
</tr>
<tr>
<td>Totals</td>
<td>91.8379</td>
<td>1812949</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. S16 Elemental analysis data of 3.
Fig. S17 Infrared spectrum of 4 in KBr.
Fig. S18 High Resolution Mass Spectrometry (HRMS) data of 4.
Eager 300 Report

Page: 1 Sample: PG-CP-14-60-1 (PG-CP-14-60-1)

Method Name : PGCP28082017
Method File : D:\chns2016 -1\PGCP28082017.mth
Chromatogram : PG-CP-14-60-1
Operator ID : CHANDNI
Analysed : 08/28/2017 17:47
Sample ID : PG-CP-14-60-1 (# 7)
Analysis Type : UnKnNow (Area)

Company Name : C.E. Instruments
Printed : 8/28/2017 19:13
Instrument N. : Instrument #1
Sample weight : .856

Calib. method : using 'K Factors'

!!! Warning missing one or more peaks.

<table>
<thead>
<tr>
<th>Element Name</th>
<th>%</th>
<th>Ret.Time</th>
<th>Area</th>
<th>BC</th>
<th>Area ratio</th>
<th>K factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen</td>
<td>4.8811</td>
<td>42</td>
<td>45575</td>
<td>RS</td>
<td>37.650750</td>
<td>1.09078E+0'</td>
</tr>
<tr>
<td>Carbon</td>
<td>76.5413</td>
<td>65</td>
<td>1715933</td>
<td>RS</td>
<td>1.0000000</td>
<td>2.61897E+0'</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>5.9255</td>
<td>181</td>
<td>326290</td>
<td>RS</td>
<td>5.258920</td>
<td>6.43284E+0'</td>
</tr>
<tr>
<td>Totals</td>
<td>87.3479</td>
<td></td>
<td>2087798</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig.S19 Elemental analysis data of 4.
Fig. S20 1H NMR spectrum of 5 in CDCl$_3$ formed in the reaction of acetyl acetone and methyl amine as catalyzed by the dinuclear [CoL$_1$]$_2$(2) and [CoL$_2$]$_2$(4) complexes.
Fig. S21 Expanded 1H NMR spectrum of 5 in CDCl$_3$ formed in the reaction of acetyl acetone and methyl amine as catalyzed by the dinuclear [CoL1]$_2$ (2) and [CoL2]$_2$ (4) complexes.
Fig. S22 13C(1H) NMR spectrum of 5 in CDCl$_3$ formed in the reaction of acetyl acetone and methyl amine as catalyzed by the dinuclear [CoL1]$_2$ (2) and [CoL2]$_2$ (4) complexes.
Fig. S23 GCMS trace of 5 (m/z 113) in EtOAc formed in the reaction of acetyl acetone and methyl amine as catalyzed by the dinuclear [CoL]$_2$ (2) and [CoL']$_2$ (4) complexes.
Fig.S24 Elemental analysis data of 5 formed in the reaction of acetyl acetone and methyl amine as catalyzed by the dinuclear [CoL1]$_2$ (2) and [CoL2]$_2$ (4) complexes.
Fig. S25 1H NMR spectrum of 6 in CDCl$_3$ formed in the reaction of acetyl acetone and ethyl amine as catalyzed by the dinuclear [CoL1]$_2$ (2) and [CoL2]$_2$ (4) complexes.
Fig. S26 Expanded 1H NMR spectrum of 6 in CDCl$_3$ formed in the reaction of acetyl acetone and ethyl amine as catalyzed by the dinuclear [CoL$_1$]$_2$ (2) and [CoL$_2$]$_2$ (4) complexes.
Fig. S27 13C-1H NMR spectrum of 6 in CDCl$_3$ formed in the reaction of acetyl acetone and ethyl amine as catalyzed by the dinuclear [CoL1]$_2$ (2) and [CoL2]$_2$ (4) complexes.
Fig. S28 GCMS trace of 6 (m/z 127) in EtOAc formed in the reaction of acetyl acetone and ethyl amine as catalyzed by the the dinuclear [CoL\(^1\)]\(_2\) (2) and [CoL\(^2\)]\(_2\) (4) complexes.
Fig. S29 ¹H NMR spectrum of 7 in CDCl₃ formed in the reaction of acetyl acetone and n-propyl amine as catalyzed by the dinuclear [CoL¹]₂ (2) and [CoL²]₂ (4) complexes.
Fig. S30 Expanded 1H NMR spectrum of 7 in CDCl$_3$ formed in the reaction of acetyl acetone and n-propyl amine as catalyzed by the dinuclear [CoL1]**2**(2) and [CoL2]**2**(4) complexes.
Fig. S31 13C\{1H} NMR spectrum of 7 in CDCl$_3$ formed in the reaction of acetyl acetone and ethyl amine as catalyzed by the dinuclear [CoL1]2 (2) and [CoL2]2 (4) complexes.
Fig. S32 GCMS trace of 7 (m/z 141) in EtOAc formed in the reaction of acetyl acetone and n-propyl amine as catalyzed by the dinuclear [CoL₁]₂ (2) and [CoL₂]₂ (4) complexes.
Fig. S33 1H NMR spectrum of 8 in CDCl$_3$ formed in the reaction of acetyl acetone and i-propyl amine as catalyzed by the dinuclear [CoL$_1^2$]$_2$ (2) and [CoL$_2^2$]$_2$ (4) complexes.
Fig. S34 Expanded 1H NMR spectrum of 8 in CDCl$_3$ formed in the reaction of acetyl acetone and i-propyl amine as catalyzed by the dinuclear [CoL$_2$]$_2$ (2) and [CoL$_2$]$_2$ (4) complexes.
Fig. S35 13C{1H} NMR spectrum of 8 in CDCl3 formed in the reaction of acetyl acetone and ethyl amine as catalyzed by the dinuclear [CoL1]2 (2) and [CoL2]2 (4) complexes.
Fig. S36 GCMS trace of 8 (m/z 141) in EtOAc formed in the reaction of acetyl acetone and i-propyl amine as catalyzed by the dinuclear [CoL₁]₂ (2) and [CoL₂]₂ (4) complexes.
Fig. S37 1H NMR spectrum of 9 in CDCl$_3$ formed in the reaction of acetyl acetone and n-butyl amine as catalyzed by the dinuclear [CoL$_1$]$_2$ (2) and [CoL$_2$]$_2$ (4) complexes.
Fig. S38 Expanded 1H NMR spectrum of 9 in CDCl3 formed in the reaction of acetyl acetone and n-butyl amine as catalyzed by the dinuclear [CoL1]2 (2) and [CoL2]2 (4) complexes.
Fig. S39 \(^{13}\text{C}^{1}\text{H}\) NMR spectrum of 8 in CDCl\(_3\) formed in the reaction of acetyl acetone and ethyl amine as catalyzed by the dinuclear [CoL\(^{-1}\)]\(_2\) (2) and [CoL\(^{2}\)]\(_2\) (4) complexes.
Fig. S40 GCMS trace of 9 (m/z 155) in EtOAc formed in the reaction of acetyl acetone and n-butyl amine as catalyzed by the dinuclear [CoL$_1$]$_2$ (2) and [CoL$_2$]$_2$ (4) complexes.
Fig. S41 ¹H NMR spectrum of 10 in CDCl₃ formed in the reaction of acetyl acetone and 2-picoly amine as catalyzed by the dinuclear [CoL¹]₂ (2) and [CoL²]₂ (4) complexes.
Fig. S42 Expanded 1H NMR spectrum of 10 in CDCl$_3$ formed in the reaction of acetyl acetone and 2-picoyl amine as catalyzed by the dinuclear [CoL1]$_2$(2) and [CoL2]$_2$(4) complexes.
Fig. S43 13C{[1H]} NMR spectrum of 10 in CDCl$_3$ formed in the reaction of acetyl acetone and ethyl amine as catalyzed by the dinuclear [CoL1]$_2$ (2) and [CoL2]$_2$ (4) complexes.
Fig.S44 GCMS trace of 10 (m/z 190) in EtOAc formed in the reaction of acetyl acetone and 2-picolyl amine as catalyzed by the the dinuclear [CoL₁]₂ (2) and [CoL₂]₂ (4) complexes.
Fig. S45 1H NMR spectrum of 11 in CDCl$_3$ formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and ethyl amine as catalyzed by the dinuclear [CoL1]$_2$ (2) and [CoL2]$_2$ (4) complexes.
Fig. S46 Expanded 1H NMR spectrum of 11 in CDCl$_3$ formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and ethyl amine as catalyzed by the dinuclear [CoL]$^1)_2$ (2) and [CoL]$^2)_2$ (4) complexes.
Fig. S47 13C{1H} NMR spectrum of 11 in CDCl$_3$ formed in the reaction of acetyl acetone and ethyl amine as catalyzed by the dinuclear [CoL1]$_2$ (2) and [CoL2]$_2$ (4) complexes.
Fig. S48 GCMS trace of 11 (m/z 183) in EtOAc formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and ethyl amine as catalyzed by the dinuclear [CoL^1]_2 (2) and [CoL^2]_2 (4) complexes.
Fig. S49 Elemental analysis data of 11 formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and ethyl amine as catalyzed by the dinuclear [CoL1]$_2$ (2) and [CoL2]$_2$ (4) complexes.
Fig. S50 1H NMR spectrum of 12 in CDCl$_3$ formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and n-propyl amine as catalyzed by the dinuclear [CoL$_1$]2 (2) and [CoL$_2$]2 (4) complexes.
Fig. S51 Expanded 1H NMR spectrum of 12 in CDCl$_3$ formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and n-propyl amine as catalyzed by the dinuclear [CoL1]$_2$ (2) and [CoL2]$_2$ (4) complexes.
Fig. S52 13C-1H NMR spectrum of 12 in CDCl$_3$ formed in the reaction of ethyl 2-oxocyclopentane-1-carboxylate and n-propyl amine as catalyzed by the dinuclear [CoL$_1^{12}$]$_2$ (2) and [CoL$_2^{2}$]$_2$ (4) complexes.
Fig. S53 GCMS trace of 12 (m/z 197) in EtOAc formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and n-propyl amine as catalyzed by the the dinuclear [CoL1]\textsubscript{2} (2) and [CoL2]\textsubscript{2} (4) complexes.
Fig. S54 Elemental analysis data of 12 formed in the reaction of ethyl 2-oxocyclopentane carboxylate and n-propyl amine as catalyzed by the dinuclear [CoL\textsubscript{1}\textsubscript{2}]\textsubscript{(2)} and [CoL\textsubscript{2}\textsubscript{2}]\textsubscript{(4)} complexes.
Fig. S55 1H NMR spectrum of 13 in CDCl$_3$ formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and i-propyl amine as catalyzed by the dinuclear [CoL]1$_2$(2) and [CoL]2$_2$(4) complexes.
Fig. S56 Expanded 1H NMR spectrum of 13 in CDCl$_3$ formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and i-propyl amine as catalyzed by the dinuclear [CoL1]$_2$ (2) and [CoL2]$_2$ (4) complexes.
Fig. S57 13C\{1H\} NMR spectrum of 13 in CDCl$_3$ formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and i-propyl amine as catalyzed by the dinuclear [CoL1]$_2$ (2) and [CoL2]$_2$ (4) complexes.
Fig. S58 GCMS trace of 13 (m/z 197) in EtOAc formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and i-propyl amine as catalyzed by the dinuclear [CoL1]2 (2) and [CoL2]2 (4) complexes.
Fig. S59 Elemental analysis data of 13 formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and i-propyl amine as catalyzed by the dinuclear [CoL1]2 (2) and [CoL2]2 (4) complexes.
Fig. S60 1H NMR spectrum of 14 in CDCl3 formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and n-butyl amine as catalyzed by the dinuclear [CoL1]2 (2) and [CoL2]2 (4) complexes.
Fig. S61 Expanded 1H NMR spectrum of 14 in CDCl₃ formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and n-butyl amine as catalyzed by the dinuclear [CoL₁]₂ (2) and [CoL₂]₂ (4) complexes.
Fig. S62 13C{'^{1}H} NMR spectrum of 14 in CDCl$_3$ formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and n-butyl amine as catalyzed by the dinuclear [CoL]1_2(2) and [CoL]2_2(4) complexes.
Fig. S63 GCMS trace of 14 (m/z 211) in EtOAc formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and n-butyl amine as catalyzed by the dinuclear [CoL1]2 (2) and [CoL2]2 (4) complexes.
Fig. S64 Elemental analysis data of 14 formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and n-butyl amine as catalyzed by the dinuclear [CoL1]$_2$(2) and [CoL2]$_2$(4) complexes.
Fig. S65 1H NMR spectrum of 5 in CDCl$_3$ formed in the reaction of acetylacetone and methyl amine.
Fig. S66 GCMS trace of 5 (m/z 113) in EtOAc formed in the reaction of acetyl acetone and methyl amine.
Fig. S67 1H NMR spectrum of 5 in CDCl3 formed in the reaction of acetyl acetone and methyl amine as catalyzed by Co(OAc)₂•4H₂O.
Fig. S68 GCMS trace of 5 (m/z 113) in EtOAc formed in the reaction of acetyl acetone and methyl amine as catalyzed by Co(OAc)$_2$•4H$_2$O.
Fig. S69 1H NMR spectrum of 5 in CDCl$_3$ formed in the reaction of acetyl acetone and methyl amine as catalyzed by H$_2$L1 (1).
Fig. S70 GCMS trace of 5 (m/z 113) in EtOAc formed in the reaction of acetyl acetone and methyl amine as catalyzed by H$_2$L1 (1).
Fig. S71 1H NMR spectrum of 5 in CDCl$_3$ formed in the reaction of acetyl acetone and methyl amine as catalyzed by H$_2$L2 (3).
Fig. S72 1H NMR spectrum of 5 in CDCl$_3$ formed in the reaction of acetyl acetone and methyl amine as catalyzed by the dinuclear [CoL1]$_2$ (2) and [CoL2]$_2$ (4) complexes in the presence of Hg.
Fig. S73 GCMS trace of 5 (m/z 113) in EtOAc formed in the reaction of acetyl acetone and methyl amine as catalyzed by the dinuclear [CoL']₂ (2) and [CoL²]₂ (4) complexes in the presence of Hg.