Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Suplementary Information

New Journal of Chemistry

(Manuscript ID NJ-ART-01-2020-00005)

Dinuclear cobalt complexes supported by biphenol and binaphthol-derived bis (salicylaldimine) ligands: Synthesis, characterization and catalytic application in β -enaminones synthesis from 1, 3-dicarbonyl compounds and Aliphatic amines

Dr. Adelew Estifanos Filkale^a,* Dr. Chandni Pathak^b

^aDepartment of Chemistry, College of Computational & Natural Sciences, Hawassa University, P.O. Box,05, Ethiopia

^bDepartment of Applied Chemistry, Jabalpur Engineering College, Jabalpur, M.P.,

Table of Contents

Table 1S. Solvent variation study for the β -enaminone reaction of acetyl acetone and methyl amine as catalyzed by the dinuclear [CoL1]2 (2) and [CoL2]2 (4) complexes _____6

Table 2S. Time variation study for the β -enaminone reaction of acetyl acetone and methyl amine as catalyzed by the dinuclear [CoL1]2 (2) and [CoL2]2 (4) complexes. _____7

 Table 3S. Selected results of blank, control and mercury drop experiments for the β

 enaminone reaction of acetyl acetone and methylamine as catalyzed by the dinuclear

 [CoL1]2 (2) and [CoL2]2 (4) complexesa.

 Fig. S1 1H NMR spectrum of 1 in CDCl3.

Fig. S2 Expanded 1H NMR spectrum of 1 in CDCl ₃	10
Fig. S3 ¹³ C{1H} NMR spectrum of 1 in CDCl ₃	11
Fig. S4 Infrared spectrum of 1 in KBr	12
Fig. S5 High Resolution Mass Spectrometry (HRMS) data of 1	13
Fig. S6 Elemental analysis data of 1	14
Fig. S7 Infrared spectrum of 2 in KBr	15
Table 4S. Important IR bands of $1(H_2L^1)$ and 3 (H_2L^2) dinucclear complexes 2 and 4	16
Table 5S. UV–Visible spectra of 1, 2, 3 and 4	17
Fig. S8 High Resolution Mass Spectrometry (HRMS) data of 2	18
Fig. S9 Elemental analysis data of 2	19

Fig. S32 GCMS trace of 7 (m/z 141) in EtOAc formed in the reaction of acetyl acetone and n-propyl amine as catalyzed by the the dinuclear $[CoL^1]_2(2)$ and $[CoL^2]_2(4)$ complexes42
Fig.S33 ¹ H NMR spectrum of 8 in CDCl ₃ formed in the reaction of acetyl acetone and i- propyl amine as catalyzed by the dinuclear $[CoL^1]_2(2)$ and $[CoL^2]_2(4)$ complexes43
Fig. S34 Expanded ¹ H NMR spectrum of 8 in CDCl ₃ formed in the reaction of acetyl acetone and i-propyl amine as catalyzed by the dinuclear $[CoL^1]_2$ (2) and $[CoL^2]_2$ (4) complexes44
Fig. S35 13C{1H} NMR spectrum of 8 in CDCl3 formed in the reaction of acetyl acetone and ethyl amine as catalyzed by the dinuclear [CoL1]2 (2) and [CoL2]2 (4) complexes45
Fig. S36 GCMS trace of 8 (m/z 141) in EtOAc formed in the reaction of acetyl acetone and i-propyl amine as catalyzed by the the dinuclear $[CoL^1]_2(2)$ and $[CoL^2]_2(4)$ complexes46
Fig. S37 ¹ H NMR spectrum of 9 in CDCl ₃ formed in the reaction of acetyl acetone and n- butyl amine as catalyzed by the dinuclear $[CoL^1]_2(2)$ and $[CoL^2]_2(4)$ complexes47
Fig. S38 Expanded 1H NMR spectrum of 9 in CDCl3 formed in the reaction of acetyl acetone and n-butyl amine as catalyzed by the dinuclear [CoL1]2 (2) and [CoL2]2 (4) complexes48
Fig. S39 ¹³ C{ ¹ H} NMR spectrum of 8 in CDCl ₃ formed in the reaction of acetyl acetone and ethyl amine as catalyzed by the dinuclear $[CoL^1]_2(2)$ and $[CoL^2]_2(4)$ complexes49
Fig. S40 GCMS trace of 9 (m/z 155) in EtOAc formed in the reaction of acetyl acetone and n-butyl amine as catalyzed by the the dinuclear $[CoL^1]_2$ (2) and $[CoL^2]_2$ (4) complexes50
Fig. S41 ¹ H NMR spectrum of 10 in CDCl ₃ formed in the reaction of acetyl acetone and 2- picolyl amine as catalyzed by the dinuclear $[CoL^1]_2(2)$ and $[CoL^2]_2(4)$ complexes51
Fig. S42 Expanded ¹ H NMR spectrum of 10 in $CDCI_3$ formed in the reaction of acetyl acetone and 2-picolyl amine as catalyzed by the dinuclear $[CoL^1]_2(2)$ and $[CoL^2]_2(4)$ complexes52
Fig. S43 ${}^{13}C{}^{1}H$ NMR spectrum of 10 in CDCl ₃ formed in the reaction of acetyl acetone and ethyl amine as catalyzed by the dinuclear [CoL ¹] ₂ (2) and [CoL ²] ₂ (4) complexes53
Fig.S44 GCMS trace of 10 (m/z 190) in EtOAc formed in the reaction of acetyl acetone and 2-picolyl amine as catalyzed by the the dinuclear $[CoL^1]_2$ (2) and $[CoL^2]_2$ (4) complexes54
Fig. S45 ¹ H NMR spectrum of 11 in CDCl ₃ formed in the reaction of ethyl 2- oxocyclopentanecarboxylate and ethyl amine as catalyzed by the dinuclear $[CoL^1]_2(2)$ and $[CoL^2]_2(4)$ complexes55
Fig. S46 Expanded ¹ H NMR spectrum of 11 in $CDCl_3$ formed in the reaction of ethyl 2- oxocyclopentanecarboxylate and ethyl amine as catalyzed by the dinuclear $[CoL^1]_2(2)$ and $[CoL^2]_2(4)$ complexes56
Fig. S47 ${}^{13}C{}^{1H}$ NMR spectrum of 11 in CDCl ₃ formed in the reaction of acetyl acetone and ethyl amine as catalyzed by the dinuclear $[CoL^1]_2(2)$ and $[CoL^2]_2(4)$ complexes57

Fig. S48 GCMS trace of 11 (m/z 183) in EtOAc formed in the reaction of ethyl 2- oxocyclopentanecarboxylate and ethyl amine as catalyzed by the the dinuclear $[CoL^1]_2(2)$ and $[CoL^2]_2(4)$ complexes58
Fig.S49 Elemental analysis data of 11 formed in the reaction of ethyl 2- oxocyclopentanecarboxylate and ethyl amine as catalyzed by the dinuclear [CoL ¹] ₂ (2) and [CoL ²] ₂ (4) complexes59
Fig.S50 ¹ H NMR spectrum of 12 in CDCl ₃ formed in the reaction of ethyl 2- oxocyclopentanecarboxylate and n-propyl amine as catalyzed by the dinuclear $[CoL^1]_2(2)$ and $[CoL^2]_2(4)$ complexes60
Fig. S51 Expanded ¹ H NMR spectrum of 12 in CDCl ₃ formed in the reaction of ethyl 2- oxocyclopentanecarboxylate and n-propyl amine as catalyzed by the dinuclear [CoL ¹] ₂ (2) and [CoL ²] ₂ (4) complexes61
Fig. S52 ¹³ C{ ¹ H} NMR spectrum of 12 in CDCl ₃ formed in the reaction of ethyl 2- oxocyclopentanecarboxylate and n-propyl amine as catalyzed by the dinuclear $[CoL^1]_2$ (2) and $[CoL^2]_2$ (4) complexes62
Fig. S53 GCMS trace of 12 (m/z 197) in EtOAc formed in the reaction of ethyl 2- oxocyclopentanecarboxylate and n-propyl amine as catalyzed by the the dinuclear $[CoL^1]_2$ (2) and $[CoL^2]_2$ (4) complexes63
Fig. S54 Elemental analysis data of 12 formed in the reaction of ethyl 2- oxocyclopentanecarboxylate and n-propyl amine as catalyzed by the dinuclear $[CoL^1]_2$ (2) and $[CoL^2]_2$ (4) complexes64
Fig. S55 ¹ H NMR spectrum of 13 in CDCl ₃ formed in the reaction of ethyl 2- oxocyclopentanecarboxylate and i-propyl amine as catalyzed by the dinuclear $[CoL^1]_2$ (2) and $[CoL^2]_2$ (4) complexes65
Fig. S56 Expanded ¹ H NMR spectrum of 13 in CDCl ₃ formed in the reaction of ethyl 2- oxocyclopentanecarboxylate and i-propyl amine as catalyzed by the dinuclear [CoL1]2 (2) and [CoL2]2 (4) complexes66
Fig. S57 ¹³ C{ ¹ H} NMR spectrum of 13 in CDCl ₃ formed in the reaction of ethyl 2- oxocyclopentanecarboxylate and i-propyl amine as catalyzed by the dinuclear $[CoL^1]_2(2)$ and $[CoL^2]_2(4)$ complexes67
Fig. S58 GCMS trace of 13 (m/z 197) in EtOAc formed in the reaction of ethyl 2- oxocyclopentanecarboxylate and i-propyl amine as catalyzed by the the dinuclear [CoL1]2 (2) and [CoL2]2 (4) complexes68
Fig. S59 Elemental analysis data of 13 formed in the reaction of ethyl 2- oxocyclopentanecarboxylate and i-propyl amine as catalyzed by the dinuclear [CoL1]2 (2) and [CoL2]2 (4) complexes69
Fig. S60 1H NMR spectrum of 14 in CDCl3 formed in the reaction of ethyl 2- oxocyclopentanecarboxylate and n-butyl amine as catalyzed by the dinuclear [CoL1]2 (2) and [CoL2]2 (4) complexes 70

Fig. S61 Expanded 1H NMR spectrum of 14 in CDCl₃ formed in the reaction of ethyl 2- oxocyclopentanecarboxylate and n-butyl amine as catalyzed by the dinuclear [CoL1]2 (2) and [CoL2]2 (4) complexes71
Fig. S62 ${}^{13}C{}^{1}H$ NMR spectrum of 14 in CDCl ₃ formed in the reaction of ethyl 2- oxocyclopentanecarboxylate and n-butyl amine as catalyzed by the dinuclear [CoL ¹] ₂ (2) and [CoL ²] ₂ (4) complexes72
Fig. S63 GCMS trace of 14 (m/z 211) in EtOAc formed in the reaction of ethyl 2- oxocyclopentanecarboxylate and n-butyl amine as catalyzed by the the dinuclear [CoL1]2 (2) and [CoL2]2 (4) complexes73
Fig. S64 Elemental analysis data of 14 formed in the reaction of ethyl 2- oxocyclopentanecarboxylate and n-butyl amine as catalyzed by the dinuclear $[CoL^1]_2(2)$ and $[CoL^2]_2(4)$ complexes74
Fig. S65 ¹ H NMR spectrum of 5 in CDCl ₃ formed in the reaction of acetyl acetone and methyl amine75
Fig. S66 GCMS trace of 5 (m/z 113) in EtOAc formed in the reaction of acetyl acetone and methyl amine76
Fig. S67 1H NMR spectrum of 5 in CDCl3 formed in the reaction of acetyl acetone and methyl amine as catalyzed by Co(OAc)2•4H2O77
Fig. S68 GCMS trace of 5 (m/z 113) in EtOAc formed in the reaction of acetyl acetone and methyl amine as catalyzed by Co(OAc)2•4H278
Fig. S69 ¹ H NMR spectrum of 5 in CDCl ₃ formed in the reaction of acetyl acetone and methyl amine as catalyzed by H_2L^1 (1)79
Fig. S70 GCMS trace of 5 (m/z 113) in EtOAc formed in the reaction of acetyl acetone and methyl amine as catalyzed by H_2L^1 (1)80
Fig. S71 ¹ H NMR spectrum of 5 in CDCl ₃ formed in the reaction of acetyl acetone and methyl amine as catalyzed by H_2L^2 (3)81
Fig. S72 1H NMR spectrum of 5 in CDCl ₃ formed in the reaction of acetyl acetone and methyl amine as catalyzed by the dinuclear [CoL1]2 (2) and [CoL2]2 (4) complexes in the presence of Hg82
Fig. S73 GCMS trace of 5 (m/z 113) in EtOAc formed in the reaction of acetyl acetone and methyl amine as catalyzed by the dinuclear $[CoL^1]_2(2)$ and $[CoL^2]_2(4)$ complexes in the presence of Hg83

Table 1S. Solvent variation study for the β -enaminone reaction of acetyl acetone and methyl amine as catalyzed by the dinuclear [CoL1]2 (2) and [CoL2]2 (4) complexes

O	0 +	Me-NH ₂	2/4 solvent, RT, 6 h	
_			, ,	(5)
			Yield ^b	
S.No	Solvent	(2)		(4)
1	CHCl ₃	89		76
2	CH_2Cl_2	75		71
3	THF	93		89
4	DMSO	86		77
5	DMF	63		65

(*a*). Reaction conditions: 1.00 mmol of ketone, 4.0 mmol of amine, 1 mol % of catalyst (2/4),
2.5 mL of solvent at room temperature, stir for 6 h. (*b*) Isolated yields (%).

Table 2S. Time variation study for the β -enaminone reaction of acetyl acetone and methyl amine as catalyzed by the dinuclear [CoL1]2 (2) and [CoL2]2 (4) complexes.

O O	+ Me-NH	2	2/4	Q HN Me
		THF,	, RT, 6 h	
				(5)
			Yield ^b	
S.No	Time (h)	(2)	(4)	
1	0.5	63	59	
2	2	78	63	
3	4	83	78	
4	6	93	89	
5	12	90	85	

(a). Reaction conditions: 1.00 mmol of ketone, 4.0 mmol of amine, 1 mol % of catalyst (2/4),
2.5 mL of THF at room temperature, stir for the given time. (b). Isolated yields (%).

Table 3S. Selected results of blank, control and mercury drop experiments for the β enaminone reaction of acetyl acetone and methylamine as catalyzed by the dinuclear [CoL1]2 (2) and [CoL2]2 (4) complexesa.

0 0	+ Me-	$-NH_2$ (THF, R)	T, 6 h)	O HN Me (5)
	S.No	Catalyst	Yield ^b	Hg/Yield ^b
	1	(2) ^a	93	90
	2	(4) ^a	89	87
	3	-	40	
	4	Co(OAc) ₂ •4H ₂ O	42	
	5	$H_{2}L^{1}(1)$	64	
	6	$\mathrm{H}_{2}\mathrm{L}^{2}\left(3\right)$	67	

(*a*). Reaction conditions: 1.00 mmol of ketone, 4.0 mmol of amine, 1 mol % of catalyst (2/4) or 2 mol % of Co(OAc)₂•4H₂O/H₂L¹/H₂L², 2.5 mL of THF at room temperature, stir for 6 h.
(*b*). Isolated yields (%).

Fig. S1 1H NMR spectrum of 1 in CDCl3.

Fig. S2 Expanded 1H NMR spectrum of 1 in CDCl₃.

Fig. S3 ${}^{13}C{1H}$ NMR spectrum of 1 in CDCl₃.

Fig. S4 Infrared spectrum of 1 in KBr.

Fig. S5 High Resolution Mass Spectrometry (HRMS) data of 1.

Eager 300 Report Sample: PG-AE-2-27-1 (PG-AE-2-27-1) Page: 1 : PGCP16052016 Method Name : D:\CHNS2016\PGCP16052016.mth Method File Chromatogram : PG-AE-2-27-1 ΟH Operator ID : CHANDNI Company Name : C.E. Instruments : 05/16/2016 12:53 Printed : 5/17/2016 10:26 Analysed **OH** Sample ID : PG-AE-2-27-1 (# 13) Instrument N. : Instrument #1 Analysis Type : UnkNown (Area) Sample weight : .751 Calib. method : using 'K Factors' !!! Warning missing one or more peaks. K factor Ret.Time Element Name Area BC Area ratio (1) 0.0000 0.0000 31480 FU 2 1 99279 FU 0.0000 2 0.0000 6

47966 RS

1604465 RS

2119363

336173 RS

43

65

178

5.9177

5.9919

92.7099

80.8003

Fig. S6 Elemental analysis data of 1.

Nitrogen

Hydrogen

Carbon

Totals

33.450400 .107929E+07

1.000000 .264014E+07

4.772736 .705507E+07

Fig. S7 Infrared spectrum of 2 in KBr.

Compound	$v_{(O-H)/H2O}$ (cm ⁻¹)	$v_{(C=N)}$ (cm ⁻¹)	$v_{(C-O)}$ (cm ⁻¹)	$v_{(C=C)}$ (cm ⁻¹)
$H_2L^1(1)$	3440	1618	1203	1427
2	3446	1599	1143	1421
$\mathrm{H}_{2}\mathrm{L}^{2}\left(3\right)$	3386	1623	1255	1449
4	3451	1620	1254	1457

Table 4S. Important IR bands of $1(H_2L^1)$ and $3(H_2L^2)$ dinucclear complexes 2 and 4

Compound	λ max, nm	absorbance	ε, M ⁻¹ cm ⁻¹	transition
$H_2L^1(1)$	236	3 5	52000	$\pi \rightarrow \pi^*$
- ()	341	1.7	25000	$n \rightarrow \pi^*$
	230	1.22	18000	$\pi \rightarrow \pi *$
2	280	0.54	8000	$n \rightarrow \pi^*$
	393	0.26	4000	$d \rightarrow \pi^*$
$H_{2}L^{2}(3)$	244	0.23	3400	$\pi \to \pi^*$
	342	0.11	1600	$n \rightarrow \pi^*$
4	260	0.97	14000	$\pi \rightarrow \pi^*$
	306	0.33	4900	$n \rightarrow \pi^*$
	350	0.21	3100	$d \rightarrow \pi^*$

Table 5S.UV–Visible spectra of 1, 2, 3 and 4

Fig. S8 High Resolution Mass Spectrometry (HRMS) data of 2.

Eager 300 Report Page: 1 Sample: PG-AE-2-31-1 (PG-AE-2-31-1)

:	SRM23092014					4	\sum
:	D:\CHNS2012-13\SRM230	92014.mth				/	/
:	PG-AE-2-31-1					(2)
:	SONALI	Company	Name	:	C.E.	Instru	uments
:	09/23/2014 15:14	Printed		:	9/23/	2014	19:31
:	PG-AE-2-31-1 (# 18)	Instrume	nt N.	:	Instr	ument	#1
:	UnkNown (Area)	Sample w	eight	:	.926		
		: SRM23092014 : D:\CHNS2012-13\SRM230 : PG-AE-2-31-1 : SONALI : 09/23/2014 15:14 : PG-AE-2-31-1 (# 18) : UnkNown (Area)	: SRM23092014 : D:\CHNS2012-13\SRM23092014.mth : PG-AE-2-31-1 : SONALI Company : 09/23/2014 15:14 Printed : PG-AE-2-31-1 (# 18) Instrume : UnkNown (Area) Sample w	: SRM23092014 : D:\CHNS2012-13\SRM23092014.mth : PG-AE-2-31-1 : SONALI Company Name : 09/23/2014 15:14 Printed : PG-AE-2-31-1 (# 18) Instrument N. : UnkNown (Area) Sample weight	: SRM23092014 : D:\CHNS2012-13\SRM23092014.mth : PG-AE-2-31-1 : SONALI Company Name : : 09/23/2014 15:14 Printed : : PG-AE-2-31-1 (# 18) Instrument N. : : UnkNown (Area) Sample weight :	: SRM23092014 : D:\CHNS2012-13\SRM23092014.mth : PG-AE-2-31-1 : SONALI Company Name : C.E. : 09/23/2014 15:14 Printed : 9/23/ : PG-AE-2-31-1 (# 18) Instrument N. : Instr : UnkNown (Area) Sample weight : .926	: SRM23092014 : D:\CHNS2012-13\SRM23092014.mth : PG-AE-2-31-1 : SONALI Company Name : C.E. Instruct : 09/23/2014 15:14 Printed : 9/23/2014 : PG-AE-2-31-1 (# 18) Instrument N. : Instrument : UnkNown (Area) Sample weight : .926

Calib.	method	:	using	'K	Factors'
--------	--------	---	-------	----	----------

!!! Warning missing one or more peaks.

Element Name	ક	Ret.Time	Area	BC	Area ratio	K factor
Nitrogen	5.3271	43	73812	FU	24.869010	.149634E+07
Carbon	72.1021	66	1835641	FU	1.000000	.274934E+07
Hydrogen	5.5911	181	374665	RS	4.899418	.697271E+07
Totals	83.0203		2284118			

Fig. S9 Elemental analysis data of 2.

Fig. S10 ¹H NMR spectrum of **3** in $CDCl_3$.

Fig S11 Expanded ¹H NMR spectrum of 3 in CDCl₃.

Fig. S12 ${}^{13}C{}^{1}H$ NMR spectrum of 3 in CDCl₃.

Fig S13 Expanded ${}^{13}C{}^{1}H$ NMR spectrum of 3 in CDCl₃.

Fig.S14 Infrared spectrum of 3 in KBr.

Fig. S15 High Resolution Mass Spectrometry (HRMS) data of 3.

Eager 300 Report

Page: 1 Sample: PG-AE-1-86-2 (PG-AE-1-86-2) Method Name : SP-230712 Method File : D:\CHNS2012\SP-230712.mth Chromatogram : PG-AE-1-86-2 Operator ID : MNRAO Analysed : 07/23/2012 15:16 Sample ID : PG-AE-1-86-2 (# 9)

Analysis Type : UnkNown (Area)

Calib. method : using 'K Factors'

!!! Warning missing one or more peaks.

Element Name		Ret.Time	Area	BC	Area ratio	K factor
Nitrogen	4.5275	43	45902	RS	32.170660	905300.9000
Carbon	80.6678	67	1476682	RS	1.000000	.242139E+07
Hydrogen	6.6426	175	290366	RS	5.085596	.578213E+07
Totals	91.8379		1812949			

Fig. S16 Elemental analysis data of 3.

Fig. S17 Infrared spectrum of 4 in KBr.

Fig. S18 High Resolution Mass Spectrometry (HRMS) data of 4.

Calib. method : using 'K Factors'

!!! Warning missing one or more peaks.

Element Name	ક	Ret.Time	Area	BC	Area ratio	K factor
Nitrogen	4.8811	42	45575	RS	37.650750	.109078E+0
Carbon	76.5413	65	1715933	RS	1.000000	.261897E+0
Hydrogen	5.9255	181	326290	RS	5.258920	.643284E+0
Totals	87.3479		2087798			

Fig.S19 Elemental analysis data of 4.

Fig. S20 ¹H NMR spectrum of **5** in CDCl₃ formed in the reaction of acetyl acetone and methyl amine as catalyzed by the dinuclear $[CoL^1]_2(2)$ and $[CoL^2]_2(4)$ complexes.

Fig. S21 Expanded ¹H NMR spectrum of **5** in CDCl₃ formed in the reaction of acetyl acetone and methyl amine as catalyzed by the dinuclear $[CoL^{1}]_{2}(2)$ and $[CoL^{2}]_{2}(4)$ complexes.

PG-CP-14-159-1-13C

Fig. S22 ¹³C{¹H} NMR spectrum of **5** in CDCl₃ formed in the reaction of acetyl acetone and methyl amine as catalyzed by the dinuclear $[CoL^1]_2$ (**2**) and $[CoL^2]_2$ (**4**) complexes.

Fig. S23 GCMS trace of 5 (m/z 113) in EtOAc formed in the reaction of acetyl acetone and methyl amine as catalyzed by the the dinuclear $[CoL^1]_2(2)$ and $[CoL^2]_2(4)$ complexes.

!!! Warning missing one or more peaks.

Element Name	8	Ret.Time	Area	BC	Area ratio	K factor
1	0.0000	2	139533	RS		0.0000
Nitrogen	12.3527	41	170136	RS	12.354090	.108364E+07
Carbon	63.6455	63	2101869	RS	1.000000	.259525E+07
Hydrogen	9.1709	190	775439	RS	2.710554	.665260E+07
Totals	85.1691		3186977			

Fig.S24 Elemental analysis data of **5** formed in the reaction of acetyl acetone and methyl amine as catalyzed by the dinuclear $[CoL^1]_2(2)$ and $[CoL^2]_2(4)$ complexes.

Fig. S25 ¹H NMR spectrum of **6** in CDCl₃ formed in the reaction of acetyl acetone and ethyl amine as catalyzed by the dinuclear $[CoL^1]_2(2)$ and $[CoL^2]_2(4)$ complexes.

Fig. S26 Expanded ¹H NMR spectrum of **6** in CDCl₃ formed in the reaction of acetyl acetone and ethyl amine as catalyzed by the dinuclear $[CoL^{1}]_{2}(2)$ and $[CoL^{2}]_{2}(4)$ complexes.

Fig. S27 ¹³C{¹H} NMR spectrum of **6** in CDCl₃ formed in the reaction of acetyl acetone and ethyl amine as catalyzed by the dinuclear $[CoL^1]_2$ (**2**) and $[CoL^2]_2$ (**4**) complexes.

Fig. S28 GCMS trace of 6 (m/z 127) in EtOAc formed in the reaction of acetyl acetone and ethyl amine as catalyzed by the the dinuclear $[CoL^1]_2$ (2) and $[CoL^2]_2$ (4) complexes.

Fig. S29 ¹H NMR spectrum of **7** in CDCl₃ formed in the reaction of acetyl acetone and *n*-propyl amine as catalyzed by the dinuclear $[CoL^1]_2(2)$ and $[CoL^2]_2(4)$ complexes.

Fig. S30 Expanded ¹H NMR spectrum of 7 in CDCl₃ formed in the reaction of acetyl acetone and *n*-propyl amine as catalyzed by the dinuclear $[CoL^1]_2(2)$ and $[CoL^2]_2(4)$ complexes.

Fig.S31 ¹³C{¹H} NMR spectrum of 7 in CDCl₃ formed in the reaction of acetyl acetone and ethyl amine as catalyzed by the dinuclear $[CoL^1]_2$ (2) and $[CoL^2]_2$ (4) complexes.

Fig. S32 GCMS trace of 7 (m/z 141) in EtOAc formed in the reaction of acetyl acetone and *n*-propyl amine as catalyzed by the the dinuclear $[CoL^1]_2(2)$ and $[CoL^2]_2(4)$ complexes.

Fig.S33 ¹H NMR spectrum of **8** in CDCl₃ formed in the reaction of acetyl acetone and *i*-propyl amine as catalyzed by the dinuclear $[CoL^1]_2(2)$ and $[CoL^2]_2(4)$ complexes.

Fig. S34 Expanded ¹H NMR spectrum of **8** in CDCl₃ formed in the reaction of acetyl acetone and *i*-propyl amine as catalyzed by the dinuclear $[CoL^{1}]_{2}(2)$ and $[CoL^{2}]_{2}(4)$ complexes.

Fig. S35 13C{1H} NMR spectrum of **8** in CDCl3 formed in the reaction of acetyl acetone and ethyl amine as catalyzed by the dinuclear [CoL1]2 (**2**) and [CoL2]2 (**4**) complexes.

Fig. S36 GCMS trace of **8** (m/z 141) in EtOAc formed in the reaction of acetyl acetone and *i*-propyl amine as catalyzed by the the dinuclear $[CoL^1]_2(2)$ and $[CoL^2]_2(4)$ complexes.

Fig. S37 ¹H NMR spectrum of **9** in CDCl₃ formed in the reaction of acetyl acetone and *n*-butyl amine as catalyzed by the dinuclear $[CoL^1]_2$ (**2**) and $[CoL^2]_2$ (**4**) complexes•

Fig. S38 Expanded 1H NMR spectrum of 9 in CDCl3 formed in the reaction of acetyl acetone and n-butyl amine as catalyzed by the dinuclear [CoL1]2 (2) and [CoL2]2 (4) complexes.

Fig. S39 ¹³C{¹H} NMR spectrum of **8** in CDCl₃ formed in the reaction of acetyl acetone and ethyl amine as catalyzed by the dinuclear $[CoL^1]_2$ (**2**) and $[CoL^2]_2$ (**4**) complexes.

Fig. S40 GCMS trace of 9 (m/z 155) in EtOAc formed in the reaction of acetyl acetone and *n*-butyl amine as catalyzed by the the dinuclear $[CoL^1]_2(2)$ and $[CoL^2]_2(4)$ complexes.

Fig. S41 ¹H NMR spectrum of **10** in CDCl₃ formed in the reaction of acetyl acetone and 2-picolyl amine as catalyzed by the dinuclear $[CoL^1]_2$ (**2**) and $[CoL^2]_2$ (**4**) complexes.

Fig. S42 Expanded ¹H NMR spectrum of **10** in CDCl₃ formed in the reaction of acetyl acetone and 2-picolyl amine as catalyzed by the dinuclear $[CoL^1]_2$ (**2**) and $[CoL^2]_2$ (**4**) complexes.

Fig. S43 ¹³C{¹H} NMR spectrum of **10** in CDCl₃ formed in the reaction of acetyl acetone and ethyl amine as catalyzed by the dinuclear $[CoL^1]_2$ (**2**) and $[CoL^2]_2$ (**4**) complexes.

Fig.S44 GCMS trace of **10** (m/z 190) in EtOAc formed in the reaction of acetyl acetone and 2-picolyl amine as catalyzed by the the dinuclear $[CoL^1]_2(2)$ and $[CoL^2]_2(4)$ complexes.

Fig. S45 ¹H NMR spectrum of **11** in CDCl₃ formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and ethyl amine as catalyzed by the dinuclear $[CoL^1]_2$ (**2**) and $[CoL^2]_2$ (**4**) complexes.

Fig. S46 Expanded ¹H NMR spectrum of **11** in CDCl₃ formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and ethyl amine as catalyzed by the dinuclear $[CoL^1]_2(2)$ and $[CoL^2]_2(4)$ complexes.

Fig. S47 ¹³C{¹H} NMR spectrum of **11** in CDCl₃ formed in the reaction of acetyl acetone and ethyl amine as catalyzed by the dinuclear $[CoL^1]_2$ (**2**) and $[CoL^2]_2$ (**4**) complexes.

Fig. S48 GCMS trace of **11** (m/z 183) in EtOAc formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and ethyl amine as catalyzed by the the dinuclear $[CoL^1]_2$ (**2**) and $[CoL^2]_2$ (**4**) complexes.

2.767948 .665260E+07

Fig.S49 Elemental analysis data of **11** formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and ethyl amine as catalyzed by the dinuclear $[CoL^1]_2$ (**2**) and $[CoL^2]_2$ (**4**) complexes.

2668118

9.1551

81.0812

Hydrogen

Totals

184

650466 RS

Fig.S50 ¹H NMR spectrum of **12** in CDCl₃ formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and *n*-propyl amine as catalyzed by the dinuclear $[CoL^1]_2(2)$ and $[CoL^2]_2(4)$ complexes.

Fig. S51 Expanded ¹H NMR spectrum of **12** in CDCl₃ formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and *n*-propyl amine as catalyzed by the dinuclear $[CoL^1]_2(2)$ and $[CoL^2]_2(4)$ complexes.

pg-cp-14-199-1-13C

Fig. S52 ¹³C{¹H} NMR spectrum of **12** in CDCl₃ formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and *n*-propyl amine as catalyzed by the dinuclear $[CoL^1]_2(2)$ and $[CoL^2]_2(4)$ complexes.

Fig. S53 GCMS trace of **12** (m/z 197) in EtOAc formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and *n*-propyl amine as catalyzed by the the dinuclear $[CoL^1]_2(2)$ and $[CoL^2]_2(4)$ complexes.

!!! Warning missing one or more peaks.

Element Name	8	Ret.Time	Area	BC	Area ratio	K factor
1	0.0000	2	135395	RS		0.0000
Nitrogen	6.9002	42	150520	RS	23.062270	.108364E+07
Carbon	66.3992	62	3471333	RS	1.000000	.259525E+07
Hydrogen	10.0655	211	1347941	RS	2.575286	.665260E+07
Totals	83.3650		5105189			

Fig. S54 Elemental analysis data of 12 formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and *n*-propyl amine as catalyzed by the dinuclear $[CoL^1]_2(2)$ and $[CoL^2]_2(4)$ complexes.

Fig. S55 ¹H NMR spectrum of **13** in CDCl₃ formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and *i*-propyl amine as catalyzed by the dinuclear $[CoL^1]_2(2)$ and $[CoL^2]_2(4)$ complexes.

Fig. S56 Expanded ¹H NMR spectrum of 13 in CDCl₃ formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and i-propyl amine as catalyzed by the dinuclear [CoL1]2 (2) and [CoL2]2 (4) complexes.

Fig. S57 ¹³C{¹H} NMR spectrum of **13** in CDCl₃ formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and *i*-propyl amine as catalyzed by the dinuclear $[CoL^1]_2(2)$ and $[CoL^2]_2(4)$ complexes.

Fig. S58 GCMS trace of 13 (m/z 197) in EtOAc formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and i-propyl amine as catalyzed by the the dinuclear [CoL1]2 (2) and [CoL2]2 (4) complexes.

Calib. method : using 'K Factors'

!!! Warning missing one or more peaks.

Element Name	8	Ret.Time	Area	BC	Area ratio	K factor
Nitrogen	6.8667	41	131484	RS	23.114010	.108364E+07
Carbon	66.2180	62	3039112	RS	1.000000	.259525E+07
Hydrogen	10.1263	202	1190365	RS	2.553092	.665260E+07
Totals	83.2111		4360960			

Fig. S59 Elemental analysis data of 13 formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and i-propyl amine as catalyzed by the dinuclear [CoL1]2 (2) and [CoL2]2 (4) complexes.

Fig. S60 1H NMR spectrum of 14 in CDCl3 formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and n-butyl amine as catalyzed by the dinuclear [CoL1]2 (2) and [CoL2]2 (4) complexes.

pg-cp-14-201-1-1H

Fig. S61 Expanded 1H NMR spectrum of 14 in CDCl₃ formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and n-butyl amine as catalyzed by the dinuclear [CoL1]2 (2) and [CoL2]2 (4) complexes.

pg-cp-14-201-1-13C

Fig. S62 ¹³C{¹H} NMR spectrum of **14** in CDCl₃ formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and *n*-butyl amine as catalyzed by the dinuclear $[CoL^1]_2(2)$ and $[CoL^2]_2(4)$ complexes.

Fig. S63 GCMS trace of **14** (m/z 211) in EtOAc formed in the reaction of ethyl 2oxocyclopentanecarboxylate and n-butyl amine as catalyzed by the the dinuclear [CoL1]**2** (**2**) and [CoL2]**2** (**4**) complexes.

Fig. S64 Elemental analysis data of **14** formed in the reaction of ethyl 2-oxocyclopentanecarboxylate and *n*-butyl amine as catalyzed by the dinuclear $[CoL^1]_2$ (**2**) and $[CoL^2]_2$ (**4**) complexes.

Fig. S65 ¹H NMR spectrum of 5 in CDCl₃ formed in the reaction of acetyl acetone and methyl amine.

Fig. S66 GCMS trace of 5 (m/z 113) in EtOAc formed in the reaction of acetyl acetone and methyl amine.

Fig. S67 1H NMR spectrum of 5 in CDCl3 formed in the reaction of acetyl acetone and methyl amine as catalyzed by Co(OAc)2•4H2O.

Fig. S68 GCMS trace of **5** (m/z 113) in EtOAc formed in the reaction of acetyl acetone and methyl amine as catalyzed by Co(OAc)2•4H2**O**.

Fig. S69 ¹H NMR spectrum of 5 in CDCl₃ formed in the reaction of acetyl acetone and methyl amine as catalyzed by H_2L^1 (1).

Fig. S70 GCMS trace of 5 (m/z 113) in EtOAc formed in the reaction of acetyl acetone and methyl amine as catalyzed by H₂L¹ (1).

Fig. S71 ¹H NMR spectrum of 5 in CDCl₃ formed in the reaction of acetyl acetone and methyl amine as catalyzed by H_2L^2 (3).

Fig. S72 1H NMR spectrum of 5 in CDCl₃ formed in the reaction of acetyl acetone and methyl amine as catalyzed by the dinuclear [CoL1]2 (2) and [CoL2]2 (4) complexes in the presence of Hg.

Fig. S73 GCMS trace of **5** (m/z 113) in EtOAc formed in the reaction of acetyl acetone and methyl amine as catalyzed by the dinuclear $[CoL^1]_2(2)$ and $[CoL^2]_2(4)$ complexes in the presence of Hg.