Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

## Supporting Information

## A noval malonic acid assisted synthesized porous Fe<sub>2</sub>O<sub>3</sub> microspheres for ultra-fast

## response and recovery toward TEA

Chengbo Zhai, Yi Liu, Liyong Du, Dongxue Wang, Mingzhe Zhang\*

State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, People's

Republic of China.

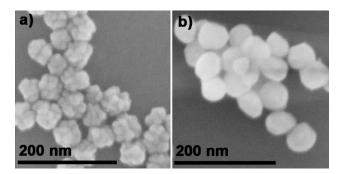



Fig. S1 The SEM image of the (a) unannealed and (b) annealed  $Fe_2O_3$  nanoparticles.

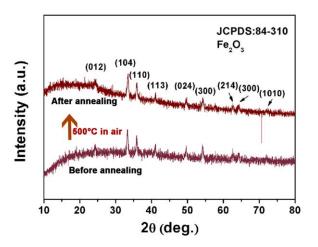



Fig. S2 The XRD patterns of the nanoparticles before and after annealing.

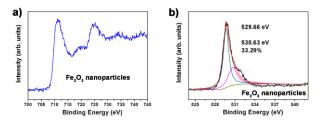



Fig. S3 (a) The Fe 2p spectra and (b) the O 1s spectra of the  $Fe_2O_3$  nanoparticles.

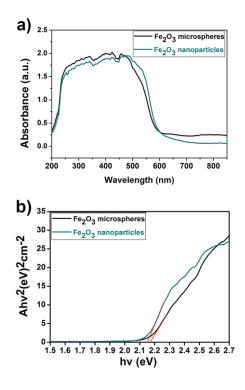



Fig. S4 (a) The UV–vis absorbance spectrum for the porous  $Fe_2O_3$  microspheres and annealed  $Fe_2O_3$  nanoparticles, (b) The corresponding calculated results of band gap energies.