Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supplementary Information

Synthesis, Photophysical and Electrochemical Properties of Donor-Acceptor Type Hydrazinyl Thiazolyl Coumarins

G. Kumar, ^a G. Trivikram Reddy, ^a B. Ramakrishna, ^b Y.V. Divyasri, ^a L. Subramanyam Sarma^a and N. C. Gangi Reddy*^a

 ^a Department of Chemistry, School of Physical Sciences, Yogi Vemana University, Kadapa-516 003, Andhra Pradesh, India.
 ^bSchool of Chemistry, University of Hyderabad, Central University P.O., Hyderabad 500 046, India E-mail: ncgreddy@yogivemanauniversity.ac.in

Table of Contents

Contents	Page No.
General information	S2
Physical and spectral data (¹ H NMR, HRMS and Mass) of synthesized compounds (4a-4ak)	S3-S11
Copies of ¹ H NMR spectra of synthesized compounds (4a-4ak)	S12-S27
Copies of HRMS and Mass spectra of synthesized compounds (4a-4ak)	S28-S40
X-ray crystal structure and data of compound 4b	S41-S51
Cyclic voltammograms of HTCs of aromatic aldehydes/ketones	S51

General information

All chemicals and solvents were purchased from commercial sources (Sigma Aldrich, Acros Organics Ltd., and Merck) and were used as received. The ¹H NMR and ¹³C NMR (500 MHz and 125 MHz) spectra were recorded on Bruker NMR spectrometer (500 MHz). The data are reported as follows: chemical shift (ppm) and multiplicity [s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet or unresolved) and brs (broad singlet)] and coupling constant(s) are given in Hz. High-Resolution Mass Spectra were recorded on i) Bruker micrOTOF-QII mass spectrometer and ii) Micromass ESI-TOF MS. Mass Spectra were recorded on Shimadzu-LCMS-2010 A mass spectrometer. XRD pattern was recorded using a Rigaku Miniflex 600 diffractometer. Absorbance spectra were recorded on Shimadzu model UV-3100 or Carry 100 Bio UV-Visible spectrophotometer and fluorescence emission spectra were recorded on a Jobin Yvon Horiba model Fluoromax-3 spectrofluorimeter. The quantum yields of titled compounds (4) were calculated using quinine sulphate as standard reference compound (ϕ_{em}) = 0.545 in 1.0 N H₂SO₄). For HOMO and LUMO calculations, Cyclic voltammetry experiments were performed on a CHI6002E (CH Instruments Inc., USA) electrochemical workstation equipped with a standard three-electrode assembly. Melting points were determined by MR-Vis+ instrument (Labindia) and are uncorrected. Thin layer chromatography (TLC) was performed on 0.25 mm Merck silica gel plates and the developed plates are visualized under UV light. Millipore double distilled water was used for the workup process.

Physical and spectral data (¹H NMR,¹³C NMR, HRMS and Mass) of synthesized compounds (4a-4ak)

	finazor i ji) zir enromen z one (ia).
	Yellow solid, yield: 98%, mp: 208-210°C. ¹ H NMR
0-4 ⁰ H	(500MHz, d ₆ -DMSO): δ 12.19 (brs, 1H, -NH), 8.55 (s,
	1H, Thiazole H), 8.07 (s, 1H, -N=C-H), 7.86 (dd, J=8.0
	Hz, J=1.5 Hz, 1H, arom H), 7.78 (s, 1H, Coumarin C ₄ -
Les Les	H), 7.68-7.66(m, 2H, arom H), 7.62 (td, J=7.0 Hz,
4a	J=1.5 Hz, 1H, arom H), 7.46-7.43 (m, 3H, arom H),
	7.41-7.38 (m, 2H, arom H). HRMS (ESI): Anal. Calcd.
	For $C_{19}H_{14}O_2N_3S$ [M +H] ⁺ 348.0801; Found: 348.0806.

(E)-3-(2-(2-benzylidenehydrazinyl)thiazol-4-yl)-2H-chromen-2-one (4a):

(*E*)-3-(2-(2-(4-methoxybenzylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one(4b):

Yellow solid, yield: 98%. mp: 241-242 °C. ¹H NMR (500MHz, d₆-DMSO): δ 12.06 (brs, 1H, -NH), 8.53 (s, 1H, Thiazole **H**), 8.01 (s, 1H, -N=C-**H**), 7.85 (dd, *J*=10.0 Hz, *J* =2.0 Hz, 1H, arom H), 7.75 (s, 1H, Coumarin C₄-**H**), 7.63-7.59 (m, 3H, arom H), 7.45 (d, *J* =10.5 Hz, 1H, arom H), 7.39 (td, *J* =9.5 Hz, *J*=1.0 Hz, 1H, arom H), 7.0 (d, *J* =11.0 Hz, 2H, arom H), 3.80 (s, 3H, -OCH₃). HRMS(ESI): Anal. Calcd. For C₂₀H₁₆O₃N₃S [M+H]⁺ 378.0907; Found: 378.0915

(*E*)-3-(2-(2-(4-hydroxybenzylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (4c):

	Dark brown solid, yield: 96%. mp: 248-250 °C. ¹ H
-	NMR (500MHz, d ₆ -DMSO): δ 11.94 (s, 1H NH), 8.54
	(s, 1H, Thiazole H), 7.97 (s, 1H, -N=C-H), 7.85(dd,
	J=7.5 Hz, J=1.5 Hz, 1H, arom H), 7.74 (s, 1H,
dc OH	Coumarin C ₄ - H), 7.63 (td, $J = 7.0$ Hz, $J = 1.5$ Hz, 1H,
40	arom H), 7.50 (d, $J = 8.5$ Hz, 2H, arom H), 7.45 (d, J
	= 9.0 Hz, 1H, arom H), 7.39 (td, $J = 8.0$ Hz, $J = 1.0$ Hz,
	1H, arom H), 6.82 (d, <i>J</i> =9.0 Hz, 2H, arom H).

(E)-3-(2-(2-(3-hydroxybenzylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (4d):

	Yellow solid, yield: 96%. mp: 250-252 °C. ¹ H NMR
	(500MHz, d ₆ -DMSO): δ 12.14 (s, 1H, -NH), 9.60 (brs,
	1H, -OH), 8.53 (s, 1H, Thiazole H), 7.97 (s, 1H, -N=C-
	H), 7.85(d, <i>J</i> =8.0 Hz, 1H, arom H), 7.77 (s, 1H,
	Coumarin C ₄ - H), 7.62 (td, <i>J</i> =8.5 Hz, <i>J</i> =1.5 Hz, 1H,
	arom H), 7.45 (d, J=8.0 Hz, 1H, arom H), 7.38 (t,
40 ÓH	J=7.5 Hz, 1H, arom H), 7.22 (t, J =8.0 Hz, 1H, arom
	H), 7.12 (s, 1H, arom H), 7.04 (d, $J = 8.0$ Hz, 1H,
	arom H), 6.79 (dd, J=8.0 Hz, J=2.0 Hz 1H, arom H).

(*E*)-3-(2-(2-(2-hydroxybenzylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (4e):

(E)-3-(2-(2-(3-phenoxybenzylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (4f):

(E)-3-(2-(2-(4-nitrobenzylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (4g):

Orange solid, yield: 96%, mp: 236-238 °C. ¹H NMR (500MHz, d₆-DMSO): δ 12.66 (brs, 1H, -NH), 8.55 (s, 1H, Thiazole **H**), 8.28 (d, *J*=9.0 Hz, 2H, arom H), 8.17 (s, 1H, -N=C-**H**), 7.91 (d, *J*=8.5 Hz, 2H, arom H), 7.87 (d, *J*=8.0 Hz, 1H, arom H), 7.84 (s, 1H, Coumarin C₄-**H**), 7.64 (td, *J*=8.5 Hz, *J*=1.5 Hz, 1H, arom H), 7.46 (d, *J*=8.5 Hz, 1H, arom H), 7.40 (t, *J*=8.0 Hz, 1H, arom H).

(E)-3-(2-(2-(3-chloro-4-hydroxybenzylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (4i):

Yellow solid, yield: 93%, mp: 232-234 °C. ¹H NMR (500MHz, d₆-DMSO): δ 12.26 (brs, 1H, -NH), 10.36 (s, 1H,-OH), 8.54 (s, 1H, Thiazole **H**), 8.29 (s, 1H, -N=C-**H**), 7.86 (dd, *J*=9.5 Hz, *J*=2.0 Hz, 1H, arom H), 7.78 (s, 1H, Coumarin C₄-**H**), 7.65-7.61 (m, 2H, arom H), 7.45 (d, *J*=10.0 Hz, 1H, arom H), 7.39 (td, *J*=9.5

Hz, J=1.0Hz, 1H, arom H), 7.24 (dd, J=11.0 Hz, J=3.5 Hz, 1H, arom H), 6.92 (d, J=11.0 Hz, 1H, arom H)
HRMS (ESI): Anal. Calcd. For $C_{19}H_{11}O_3N_3ClS[M-H]^+$
396.02; Found: 396.02.

(E)-3-(2-(2-(3-bromo-4-hydroxybenzylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (4j):

Dark yellow solid, yield: 96%. mp: 224-226 °C. ¹H NMR (500MHz, d₆-DMSO): δ 12.05 (brs, 1H, -NH), 8.54 (s, 1H, Thiazole H), 7.97 (s, 1H, -N=C-H), 7.86 (d, *J* = 9.5 Hz, 1H, arom H), 7.75 (s, 1H, Coumarin C₄-H), 7.63 (td, *J*=9.5 Hz, *J*=2.0 Hz, 1H, arom H), 7.46 (d, *J* = 10.0 Hz, 1H, arom H), 7.39 (t, *J* = 9.0 Hz,1H, arom H), 7.25 (d, *J*=2.5 Hz, 1H, arom H), 7.08 (dd, *J*=9.5 Hz, *J*=2.0 Hz,1H arom H), 6.83 (d, *J*=10.0 Hz, 1H, arom H), 3.83 (s, 3H, -OCH₃). HRMS (ESI): Anal. Calcd. For C₂₀H₁₆O₄N₃S[M+H]⁺ 394.0856; Found: 394.0864.

	Light yellow solid, yield: 93%. mp: 245-247 °C. ¹ H
0-4 ⁰ H	NMR (500MHz, d ₆ -DMSO): δ 12.20 (s, 1H, -NH),
	9.65 (s, 1H,-OH), 8.55 (s, 1H, Thiazole H), 8.32 (s, 1H,
HO HO	-N=C-H), 7.86 (dd, <i>J</i> =8.0 Hz, <i>J</i> =1.5 Hz, 1H, arom H),
41	7.77 (s, 1H, Coumarin C ₄ -H), 7.63 (td, <i>J</i> =7.5 Hz, <i>J</i> =1.5
	Hz, 1H, arom H), 7.46 (d, <i>J</i> =8.0 Hz, 1H, arom H), 7.39
	(td, J=8.0 Hz, J=1.0 Hz, 1H, arom H), 7.18 (d, J=2.5
	Hz, 1H, arom H), 6.87-6.82 (m, 2H, arom H), 3.72 (s,
	3H, -OCH ₃). HRMS (ESI): [M+H] ⁺ 394.0858.

(E)-3-(2-(2-(2,4-dimethoxybenzylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (4n):

Brownish yellow solid, yield: 96%, mp: 242-244 °C. ¹H NMR (500MHz, d₆-DMSO): δ 12.02 (brs, 1H, -NH), 8.54(s, 1H, Thiazole **H**), 8.31 (s, 1H, -N=C-**H**), 7.87 (d, *J*=10.0 Hz, 1H, arom H), 7.74 (s, 1H, Coumarin C₄-**H**), 7.72 (d, *J*=11.0 Hz, 1H, arom H), 7.63 (td, *J*=11.0 Hz, *J*=2.0 Hz,1H, arom H), 7.46 (d, *J*=10.5Hz, 1H, arom H), 7.39 (td, *J*=9.5 Hz, *J*=1.0 Hz, 1H, arom H), 6.64-6.62 (m, 2H, arom H), 3.86 (s, 3H, -OCH₃), 3.82 (s, 3H, -OCH₃). HRMS (ESI): [M+H]⁺408.1021.

(E)-3-(2-(2-(2,5-dimethoxybenzylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one(4o):

Yellow solid, yield: 95%. mp: 236-238 °C. ¹ H NMR
(500MHz, d ₆ -DMSO): δ 12.18 (brs, 1H, -NH), 8.53 (s,
1H, Thiazole H), 8.33 (s, 1H, -N=C-H), 7.85 (dd,
J=7.5 Hz, J=1.5 Hz, 1H, arom H), 7.76 (s, 1H,
Coumarin C ₄ -H), 7.62 (td, J=7.0 Hz, J=1.5 Hz, 1H,
arom H), 7.44 (d, J=8.5Hz, 1H, arom H), 7.38 (td,
J=7.5 Hz, J=1.0 Hz, 1H, arom H), 7.29 (d, J=3.0 Hz,
1H, arom H), 7.02 (d, J=9.0 Hz, 1H, arom H), 6.95
(dd, J=9.0 Hz, J=3.0 Hz, 1H, arom H), 3.80 (s, 3H, -
OCH ₃), 3.75 (s, 3H, -OCH ₃). HRMS (ESI):
[M+H] ⁺ 408.1017.

(E)-3-(2-(2-(3-ethoxy-2-hydroxybenzylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (4p):

(E) - 3 - (2 - (3 - ethoxy - 4 - hydroxybenzylidene) hydrazinyl) thiazol - 4 - yl) - 2H - chromoson (E) - 3 - (2 - (2 - (3 - ethoxy - 4 - hydroxybenzylidene) hydrazinyl) thiazol - 4 - yl) - 2H - chromoson (E) - 3 - (2 - (3 - ethoxy - 4 - hydroxybenzylidene) hydrazinyl) thiazol - 4 - yl) - 2H - chromoson (E) - 3 - (2 - (3 - ethoxy - 4 - hydroxybenzylidene) hydrazinyl) thiazol - 4 - yl) - 2H - chromoson (E) - 3 - (2 - (3 - ethoxy - 4 - hydroxybenzylidene) hydrazinyl) thiazol - 4 - yl) - 2H - chromoson (E) - 3 - (2 - (3 - ethoxy - 4 - hydroxybenzylidene) hydrazinyl) thiazol - 4 - yl) - 2H - chromoson (E) - 3 - (2 - (3 - ethoxybenzylidene) hydrazinyl) thiazol - 4 - yl) - 2H - chromoson (E) - 3 - (2 - (3 - ethoxybenzylidene) hydrazinyl) thiazol - 4 - yl) - 2H - chromoson (E) - 3 - (2 - (3 - ethoxybenzylidene) hydrazinyl) thiazol - 4 - yl) - 2H - chromoson (E) - 3 - (2 - (3 - ethoxybenzylidene) hydrazinyl) thiazol - 4 - yl) - 2H - chromoson (E) - 3 - (2 - (3 - ethoxybenzylidene) hydrazinyl) thiazol - 4 - yl) - 2H - chromoson (E) - 3 - (2 - (3 - ethoxybenzylidene) hydrazinyl) thiazol - 4 - yl) - 3 - (2 - (3 - ethoxybenzylidene) hydrazinyl) thiazol - 4 - yl) - 2H - chromoson (E) - 3 - (2 - (3 - ethoxybenzylidene) hydrazinyl) thiazol - 4 - yl) - 2H - chromoson (E) - 3 - (2 - (3 - ethoxybenzylidene) hydrazinyl) thiazol - 4 - yl) - 2H - chromoson (E) - 3 - (2 - (3 - ethoxybenzylidene) hydrazinyl) thiazol - 4 - yl) - 2H - chromoson (E) - 3 - (2 - (3 - ethoxybenzylidene) hydrazinyl) thiazol - 4 - yl) - 3 - (2 - (3 - ethoxybenzylidene) hydrazinyl (E) - (2 - (3 - ethoxyben	men-2-one
(4q):	

Off white solid, yield: 96%, mp: 265-267 °C. ¹ H NMR
(500MHz, d ₆ -DMSO): δ 12.03 (brs, 1H, -NH), 8.53 (s,
1H, Thiazole H), 7.96 (s, 1H, -N=C-H), 7.86 (d, J=9.5

(E)-3-(2-(2-(3,5-dibromobenzylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (4r):

Yellow solid, yield: 90%, mp: 248-250 °C. ¹H NMR (500MHz, d₆-DMSO): δ 10.79 (brs, 1H, -NH), 8.55 (s, 1H, Thiazole **H**), 8.28 (s, 1H, -N=C-**H**), 7.86 (dd, *J*=9.5 Hz, *J*=1.5 Hz, 1H, arom H), 7.82 (s, 1H, Coumarin C₄-**H**), 7.77 (s, 2H, arom H), 7.64 (td, *J*=10.5 Hz, *J*=2.0 Hz, 1H, arom H), 7.51-7.38 (m, 3H, arom H).

(3-(2-((E)-2-((E)-3-phenylallylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one(4t):

Yellow solid, yield: 96%. mp: 245-247 °C. ¹H NMR (500MHz, d₆-DMSO): δ 12.14 (s, 1H, -NH), 8.50 (s, 1H, Thiazole **H**), 7.89 (d, *J*=10.0 Hz, 1H, -N=C-**H**), 7.82 (dd, *J*=9.5 Hz, *J*=1.5 Hz, 1H, arom H), 7.74 (s, 1H, Coumarin C₄-**H**), 7.63-7.58 (m, 3H, arom H), 7.43 (d, *J* =10.0 Hz, 1H, arom H), 7.39-7.34 (m, 3H, arom H), 7.29 (tt, *J*=9.0 Hz, *J*=3.0 Hz, 1H, arom H), 6.98-6.95 (m, 2H). HRMS (ESI): Anal. Calcd. For C₂₁H₁₆O₂N₃S[M+H]⁺ 374.0958; Found: 374.0965.

(E)-3-(2-(2-(naphthalen-2-ylmethylene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one(4u):

Off-white solid, yield: 95%, mp: 254-256 °C. ¹H NMR (500MHz, d₆-DMSO): δ 12.33 (brs, 1H, -NH), 8.55 (s, 1H, Thiazole **H**), 8.23 (s, 1H, -N=C-**H**), 8.06 (s, 1H, arom H), 7.98-7.91 (m, 4H, arom H), 7.86 (dd, J = 10.0 Hz, J=2,0 Hz, 1H, arom H), 7.81 (s, 1H, Coumarin C₄-**H**), 7.63 (td, J=9.5 Hz, J=2.0 Hz, 1H, arom H), 7.58-7.52 (m, 2H, arom H), 7.46 (d, J = 10.5 Hz, 1H arom H), 7.40 (td, J=9.5 Hz, J=1.0 Hz,1H, arom H). HRMS (ESI): [M+H]⁺398.0954.

(E)-3-(2-((4-methylthiazol-5-yl)methylene)hydrazinyl)thiazol-4-yl)-2H-chromen-2one (4v):

	Yellow solid, yield: 95%. mp: 242-244 °C. ¹ H NMR
	(500MHz, d ₆ -DMSO): δ 12.22 (s, 1H, -NH), 9.0 (s,
0-4 ⁰ , H	1H, Thiazole-H), 8.53 (s, 1H, Thiazole H), 8.29 (s, 1H,
$ \bigvee_{N \to N} \bigvee_{$	-N=C-H), 7.86 (dd, <i>J</i> =9.5 Hz, <i>J</i> =1.5 Hz, 1H, arom H),
S N	7.77 (s, 1H, Coumarin C ₄ -H), 7.63 (td, J=9.0 Hz,
+•	J=2.0 Hz, 1H, arom H), 7.46 (d, J=10.5 Hz, 1H, arom
	H), 7.39 (td, J=9.5 Hz, J=1.5 Hz, 1H, arom H), 2.08 (s,
	3H, -CH ₃). LCMS (ESI): [M+H] ⁺ 369.

(E)-3-(2-((2-aminopyridin-3-yl)methylene)hydrazinyl)thiazol-4-yl)-2H-chromen-2one (4w):

	Light brownish yellow solid, yield: 93%. mp: 246-248
	°C. ¹ H NMR (500MHz, d ₆ -DMSO): δ 12.64 (s, 1H, -
	NH), 8.57 (s, 1H, Thiazole H), 8.34 (brs, 1H, NH ₂),
	8.26 (s, 1H, -N=C-H), 8.17 (d, <i>J</i> =9.0 Hz, 1H, arom H),
	8.07 (dd, J=7.5 Hz, J=2.0 Hz, 1H, arom H), 7.88-7.86
$H_2N^{\prime}N^{\prime}$	(m, 2H, Coumarin C ₄ -H & 1H, arom H), 7.65 (td,
4W	J=10.5 Hz, J=2.0 Hz, 1H, arom H), 7.46 (d, J=10.5 Hz,
	1H, arom H), 7.40 (td, <i>J</i> =10.0 Hz, <i>J</i> =1.0 Hz, 1H, arom
	H), 7.02 (td, J=7.5Hz, J=1.5Hz, 1H, arom H). LCMS
	(ESI): [M+H] ⁺ 364.
	$(ESI): [M+H]^+ 364.$

(E)-3-(2-((2-chloro-8-methylquinolin-3-yl)methylene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (4x):

Yellow solid, yield: 92%, mp: 248-250°C. ¹ H NMR
(500MHz, d ₆ -DMSO): δ 12.64 (s, 1H, -NH), 8.79 (s,
1H, arom H), 8.56(s, 1H, Thiazole H), 8.50 (s, 1H,
-N=C-H), 8.02 (d, J=10.5 Hz, 1H, arom H), 7.87(dd,
J=10.0 J=2.0 Hz, 1H, arom H), 7.85(s, 1H, Coumarin
C ₄ -H), 7.69 (d, J=8.5 Hz, 1H, arom H), 7.64 (td,
J=10.5 Hz, J=1.5 Hz, 1H, arom H), 7.57 (t, J=10.0 Hz,
1H, arom H), 7.46 (d, <i>J</i> =10.0 Hz, 1H, arom H), 7.40(td,
J=9.5 Hz, J=1.0 Hz, 1H, arom H), 2.66 (s, 3H, -CH ₃).
LCMS (ESI): [M+H] ⁺ 447.

(E)-3-(2-(2-(1-phenylethylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (4y):

Light yellow solid, yield: 97%, mp: 226-228 °C. ¹ H
NMR (500MHz, d ₆ -DMSO): δ 11.34 (brs, 1H, NH),
8.59 (s, 1H, Thiazole H), 7.83 (d, J=8.0 Hz, 1H, arom
H), 7.80-7.78 (m, 3H, Coumarin C ₄ - H & 2H, arom H),
7.64 (td, J=8.5 Hz, J=1.5 Hz, 1H, arom H), 7.47-7.38

(m, 5H, arom H), 2.34 (s, 3H, -CH₃). HRMS (ESI): Anal. Calcd. For $C_{20}H_{16}O_2N_3S[M+H]^+$ 362.0958; Found: 362.0968.

(E)-3-(2-(2-(1-(p-tolyl)ethylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (4z):

Pale yellow solid, yield: 96%, mp: 240-242 °C. ¹H NMR (500MHz, d₆-DMSO): δ 11.22 (brs, 1H, -NH), 8.56 (s, 1H, Thiazole **H**), 7.81(dd, *J*=9.5 Hz, *J*=1.5 Hz, 1H, arom H), 7.75 (s, 1H, Coumarin C₄-**H**), 7.73 (d, *J*=11.0 Hz, 2H, arom H), 7.62 (td, *J*=9.5 Hz, *J*=2.0 Hz, 1H, arom H), 7.44 (d, *J*=10.5 Hz, 1H, arom H), 7.38 (td, *J*=9.5 Hz, *J*=1.0 Hz, 1H, arom H), 6.97 (d, *J*=11.5 Hz, 1H, arom H), 3.78 (s, 3H, -OCH₃), 2.3 (s, 3H, -CH₃). HRMS (ESI): Anal. Calcd. For C₂₁H₁₈O₃N₃S [M+H]⁺ 392.1063; Found: 392.1077

(E)-3-(2-(2-(1-(3-methoxyphenyl)ethylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (4ab):

(E)-3-(2-(2-(1-(4-hydroxyphenyl)ethylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (4ac):

(E)-3-(2-(2-(1-(3-hydroxyphenyl)ethylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (4ad):

(E)-3-(2-(2-(1-(4-bromophenyl)ethylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (4ae):

	Yellow solid, yield: 93%, mp: 240-242 °C. ¹ H NMR
	(500MHz, d ₆ -DMSO): δ 11.45 (brs, 1H, -NH), 8.33 (s,
	1H, Thiazole H), 7.84-7.81 (m, 1H, arom H), 7.74-7.65
	(m, 4H, Coumarin C ₄ -H & 3H, arom H), 7.62 (d, J
4ae Br	=10.5 Hz, 2H, arom H), 7.47 (d, <i>J</i> =10.0 Hz, 1H, arom
	H), 7.41 (t, <i>J</i> =9.5 Hz, 1H, arom H), 2.29 (s, 3H, -CH ₃).
	LCMS (ESI): [M+H] ⁺ 441.

(E)-3-(2-(2-(1-(4-fluorophenyl)ethylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (4af):

Light yellow solid, yield: 95%, mp: 234-236 °C. ¹H NMR (500MHz, d₆-DMSO): δ 11.32 (brs, 1H, -NH), 8.58 (s, 1H, Thiazole **H**), 7.85-7.81 (m, 3H, arom H), 7.78 (s, 1H, Coumarin C₄-**H**), 7.63 (td, *J*=9.5 Hz, *J*=2.0 Hz, 1H, arom H), 7.46 (d, *J*=10.0 Hz, 1H, arom H), 7.39 (td, *J*=9.5 Hz, *J*=1.0 Hz, 1H, arom H), 7.26 (t, *J*=11.0 Hz, 2H, arom H), 2.33 (s, 3H, -CH₃). LCMS

(ESI): [M+H]⁺ 380.

(E)-3-(2-(2-(1-(4-nitrophenyl)ethylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2	2-one
(4ag):	

Orange yellow solid, yield: 94%, mp: 260-262 °C. ¹H NMR (500MHz, d₆-DMSO): δ 11.68 (s, 1H, -NH), 8.59 (s, 1H, Thiazole **H**), 8.28 (d, *J*=9.0 Hz, 2H, arom H), 8.03(d, *J*=9.0 Hz, 2H, arom H), 7.85-7.82(m, 2H, Coumarin C₄-**H** & 1H, arom H), 7.64 (td, *J*=9.0 Hz, *J*=1.5 Hz, 1H, arom H), 7.47 (d, *J*=8.5 Hz, 1H, arom H), 7.40 (td, *J*=8.5 Hz, *J*=1.0 Hz, 1H, arom H), 2.40 (s, 3H, -CH₃). LCMS (ESI): [M+H]⁺ 407.

(E)-3-(2-(2-(1-(naphthalen-2-yl)ethylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (4aj):

$ \begin{array}{c} $	Brownish Yellow solid, yield: 93%, mp: 254-256°C.
	¹ H NMR (500MHz, d ₆ -DMSO): δ 11.64 (brs, 1H, -
	NH), 8.61 (s, 1H, Thiazole H), 8.23 (s, 1H, arom H),
	8.10 (dd, J=10.5 Hz, J=2.0 Hz, 1H, arom H), 7.99 (d,
	J=11.5 Hz, 1H, arom H), 7.93 (d, J=10.5 Hz, 1H, arom
	H), 7.82 (s, 1H, Coumarin C ₄ -H), 7.63 (d, <i>J</i> =10.5 Hz,
	1H, arom H), 7.54 (t, J=5.0 Hz, 1H, arom H), 7.47 (d,
	J=11.5 Hz, 2H, arom H), 7.43-7.36 (m, 3H, arom H),
	2.47 (s, 3H, -CH ₃).

(E)-3-(2-(2-(1-(2-oxo-4a,8a-dihydro-2H-chromen-3-yl)ethylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (4ak):

	Yellow solid, yield: 91%, mp: 252-254°C. ¹ H NMR
$ \begin{array}{c} $	(500MHz, d ₆ -DMSO): δ 11.47 (s, 1H, -NH), 8.60 (s,
	1H, Thiazole H), 8.19 (s, 1H, Coumarin H), 7.88 (dd,
	J=8.0 Hz, J=1.5 Hz, 1H, arom H), 7.83 (dd, J=7.5Hz,
	J=1.0 Hz, 1H, arom H), 7.80 (s, 1H, Coumarin C ₄ - H),
	7.67-7.62 (m, 2H, arom H), 7.46 (t, <i>J</i> =9.0 Hz, 2H, arom
	H), 7.42-7.37 (m, 2H, arom H), 2.29 (s, 3H, -CH ₃).
	HRMS (ESI): Anal. Calcd. For $C_{23}H_{16}O_4N_3S$ [M-H] ⁺
	430.0856; Found: 430.0872.

Figure S1-15. ¹H NMR Spectrum of Compound 4q

Figure S1-28. ¹H NMR Spectrum of Compound 4ae

Figure S1-31. ¹H NMR Spectrum of Compound 4aj

Figure S1-32. ¹H NMR Spectrum of 4ak

Copies of HRMS and Mass spectra of synthesized compounds (4a-4ak)

Figure S2-8. HRMS Spectrum of 4n

Figure S2-14. Mass Spectrum of 4v

Figure S2-15. 4w

Figure S2-16. Mass Spectrum of 4x

Figure S2-23. Mass Spectrum of 4ae

Figure S2-24. Mass Spectrum of 4af

Figure S2-25. Mass Spectrum of 4ag

Figure S2-26. HRMS Spectrum of 4ak

X-ray crystal structure and data of compound 4b

Figure S3: ORTEP diagram of (E)-3-(2-(2-(4-methoxybenzylidene) hydrazinyl)thiazol-4-yl)-2H- chromen-2-one (**4b**) (50 % probability)

 Table S1. Crystal data and structure refinement for compound 4b.

Identification code	shelx	
Empirical formula	C20 H15 N3 O3 S	
Formula weight	377.41	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21/c	
Unit cell dimensions	a = 13.1185(7) Å	a= 90°.
	b = 20.3561(7) Å	b=115.387(7)°.
	c = 14.7486(10) Å	g = 90°.
Volume	3558.2(4) Å ³	
Z	8	
Density (calculated)	1.409 Mg/m ³	
Absorption coefficient	0.209 mm ⁻¹	
F(000)	1568	
Crystal size	? x ? x ? mm ³	
Theta range for data collection	1.988 to 24.998°.	
Index ranges	-15<=h<=15, -24<=k<=24	1 , −17<= 1 <=17

Reflections collected	33901
Independent reflections	6260 [R(int) = 0.0642]
Completeness to theta = 24.998°	100.0 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	6260 / 0 / 489
Goodness-of-fit on F ²	0.914
Final R indices [I>2sigma(I)]	R1 = 0.0878, $wR2 = 0.2082$
R indices (all data)	R1 = 0.1842, wR2 = 0.2701
Extinction coefficient	n/a
Largest diff. peak and hole	1.034 and -0.280 e.Å ⁻³

Table S2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for skd19a. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	у	Z	U(eq)	
S(2)	6104(1)	3150(1)	6430(1)	66(1)	
S (1)	-1072(1)	4916(1)	3631(1)	73(1)	
O(1)	-1134(3)	7884(2)	3415(2)	64(1)	
O(4)	6038(3)	6127(2)	6400(2)	65(1)	
O(6)	4795(3)	-935(2)	6078(3)	78(1)	
O(3)	197(3)	842(2)	3991(3)	80(1)	
N(1)	518(3)	5709(2)	3720(3)	57(1)	
N(3)	638(4)	3963(2)	3904(3)	62(1)	
N(4)	4466(3)	3932(2)	6236(3)	57(1)	
N(6)	4447(3)	2194(2)	6244(3)	60(1)	
O(5)	7126(3)	5264(2)	6598(3)	92(1)	
N(5)	4050(3)	2815(2)	6243(3)	71(1)	
O(2)	-2209(3)	7031(2)	3238(3)	85(1)	
N(2)	1009(4)	4590(2)	3883(3)	72(1)	
C(32)	4746(4)	3312(3)	6292(3)	57(1)	
C(30)	5366(4)	4319(2)	6302(3)	51(1)	
C(37)	4644(4)	-287(2)	6166(3)	56(1)	
C(17)	397(4)	1501(3)	3973(3)	58(1)	
C(34)	4108(4)	1032(2)	6261(3)	53(1)	
C(14)	989(4)	2812(2)	3988(3)	58(1)	
C(10)	-416(4)	6084(2)	3599(3)	57(1)	
C(28)	4220(4)	5322(2)	6088(3)	55(1)	

C(27)	4081(4)	6019(2)	6078(3)	51(1)
C(22)	5020(4)	6408(2)	6255(3)	57(1)
C(7)	802(4)	7788(2)	3703(3)	59(1)
C(29)	5214(4)	5031(2)	6258(3)	52(1)
C(12)	265(4)	5090(3)	3752(4)	65(2)
C(15)	-64(4)	2643(2)	3903(4)	65(1)
C(2)	-113(5)	8179(2)	3554(4)	61(1)
C(35)	5181(4)	842(2)	6407(3)	62(1)
C(8)	672(4)	7099(2)	3701(3)	58(1)
C(38)	3579(4)	-114(2)	6045(4)	67(1)
C(33)	3798(4)	1718(2)	6274(3)	62(1)
C(39)	3310(4)	537(2)	6094(3)	61(1)
C(9)	-300(4)	6802(2)	3574(3)	55(1)
C(18)	1445(4)	1656(3)	4049(4)	68(1)
C(36)	5457(4)	193(2)	6361(3)	62(1)
C(23)	5003(5)	7078(3)	6291(4)	70(2)
C(21)	6193(4)	5454(3)	6438(4)	63(1)
C(13)	1320(5)	3509(2)	3986(4)	68(2)
C(1)	-1266(4)	7221(2)	3409(4)	61(1)
C(16)	-360(4)	1984(3)	3896(4)	67(1)
C(19)	1739(4)	2309(3)	4057(3)	66(1)
C(3)	-105(5)	8852(3)	3544(4)	73(2)
C(24)	4034(5)	7384(2)	6171(4)	73(2)
C(31)	6298(4)	3974(2)	6407(3)	60(1)
C(6)	1788(5)	8124(3)	3848(4)	71(2)
C(26)	3094(4)	6339(3)	5942(4)	71(2)
C(4)	873(5)	9163(3)	3680(4)	76(2)
C(25)	3083(5)	7017(3)	5985(4)	77(2)
C(5)	1823(5)	8797(3)	3837(4)	79(2)
C(11)	-1318(4)	5742(2)	3554(3)	68(2)
C(40)	5895(5)	-1142(3)	6216(4)	89(2)
C(20)	-933(5)	640(3)	3742(4)	103(2)

S(2)-C(31)	1.699(4)
S(2)-C(32)	1.737(5)
S(1)-C(11)	1.707(5)
S(1)-C(12)	1.722(5)
O(1)-C(1)	1.361(5)
O(1)-C(2)	1.401(6)
O(4)-C(21)	1.382(5)
O(4)-C(22)	1.383(5)
O(6)-C(37)	1.349(5)
O(6)-C(40)	1.432(5)
O(3)-C(17)	1.369(5)
O(3)-C(20)	1.427(6)
N(1)-C(12)	1.309(6)
N(1)-C(10)	1.390(5)
N(3)-C(13)	1.256(6)
N(3)-N(2)	1.371(5)
N(4)-C(32)	1.308(5)
N(4)-C(30)	1.387(5)
N(6)-C(33)	1.303(5)
N(6)-N(5)	1.368(5)
O(5)-C(21)	1.207(5)
N(5)-C(32)	1.343(6)
N(5)-H(5)	0.8600
O(2)-C(1)	1.215(5)
N(2)-C(12)	1.365(6)
N(2)-H(2)	0.8600
C(30)-C(31)	1.361(6)
C(30)-C(29)	1.460(6)
C(37)-C(38)	1.376(6)
C(37)-C(36)	1.383(6)
C(17)-C(16)	1.367(6)
C(17)-C(18)	1.368(6)
C(34)-C(35)	1.384(6)
C(34)-C(39)	1.396(6)
C(34)-C(33)	1.457(6)
C(14)-C(15)	1.376(6)
C(14)-C(19)	1.393(6)

 Table S3.
 Bond lengths [Å] and angles [°] for skd19a.

C(14)-C(13)	1.484(6)
C(10)-C(11)	1.350(6)
C(10)-C(9)	1.471(6)
C(28)-C(29)	1.354(6)
C(28)-C(27)	1.429(6)
C(28)-H(28)	0.9300
C(27)-C(26)	1.385(6)
C(27)-C(22)	1.392(6)
C(22)-C(23)	1.365(6)
C(7)-C(2)	1.377(6)
C(7)-C(6)	1.396(6)
C(7)-C(8)	1.412(6)
C(29)-C(21)	1.473(6)
C(15)-C(16)	1.395(6)
C(15)-H(15)	0.9300
C(2)-C(3)	1.370(6)
C(35)-C(36)	1.379(6)
C(35)-H(35)	0.9300
C(8)-C(9)	1.351(6)
C(8)-H(8)	0.9300
C(38)-C(39)	1.380(6)
C(38)-H(38)	0.9300
C(33)-H(33)	0.9300
C(39)-H(39)	0.9300
C(9)-C(1)	1.459(6)
C(18)-C(19)	1.383(6)
C(18)-H(18)	0.9300
C(36)-H(36)	0.9300
C(23)-C(24)	1.357(6)
C(23)-H(23)	0.9300
C(13)-H(13)	0.9300
C(16)-H(16)	0.9300
C(19)-H(19)	0.9300
C(3)-C(4)	1.366(7)
C(3)-H(3)	0.9300
C(24)-C(25)	1.376(7)
C(24)-H(24)	0.9300
C(31)-H(31)	0.9300
C(6)-C(5)	1.371(6)

C(6)-H(6)	0.9300
C(26)-C(25)	1.382(6)
С(26)-Н(26)	0.9300
C(4)-C(5)	1.383(7)
C(4)-H(4)	0.9300
С(25)-Н(25)	0.9300
C(5)-H(5A)	0.9300
С(11)-Н(11)	0.9300
C(40)-H(40A)	0.9600
C(40)-H(40B)	0.9600
C(40)-H(40C)	0.9600
C(20)-H(20A)	0.9600
C(20)-H(20B)	0.9600
C(20)-H(20C)	0.9600
C(31)-S(2)-C(32)	88.0(2)
C(11)-S(1)-C(12)	87.7(3)
C(1)-O(1)-C(2)	122.5(4)
C(21)-O(4)-C(22)	122.2(4)
C(37)-O(6)-C(40)	117.1(4)
C(17)-O(3)-C(20)	117.6(4)
C(12)-N(1)-C(10)	108.1(4)
C(13)-N(3)-N(2)	116.2(4)
C(32)-N(4)-C(30)	109.7(4)
C(33)-N(6)-N(5)	115.7(4)
C(32)-N(5)-N(6)	116.5(4)
C(32)-N(5)-H(5)	121.7
N(6)-N(5)-H(5)	121.7
C(12)-N(2)-N(3)	117.2(4)
C(12)-N(2)-H(2)	121.4
N(3)-N(2)-H(2)	121.4
N(4)-C(32)-N(5)	123.9(4)
N(4)-C(32)-S(2)	115.9(4)
N(5)-C(32)-S(2)	120.2(4)
C(31)-C(30)-N(4)	114.2(4)
C(31)-C(30)-C(29)	128.1(4)
N(4)-C(30)-C(29)	117.7(4)
O(6)-C(37)-C(38)	114.9(4)
O(6)-C(37)-C(36)	125.4(5)
C(38)-C(37)-C(36)	119.7(5)

C(16)-C(17)-C(18)	120.7(5)
C(16)-C(17)-O(3)	124.6(5)
C(18)-C(17)-O(3)	114.7(5)
C(35)-C(34)-C(39)	117.5(4)
C(35)-C(34)-C(33)	122.4(4)
C(39)-C(34)-C(33)	120.1(4)
C(15)-C(14)-C(19)	118.2(5)
C(15)-C(14)-C(13)	121.5(4)
C(19)-C(14)-C(13)	120.3(5)
C(11)-C(10)-N(1)	115.4(5)
C(11)-C(10)-C(9)	127.5(5)
N(1)-C(10)-C(9)	117.0(4)
C(29)-C(28)-C(27)	123.0(4)
C(29)-C(28)-H(28)	118.5
C(27)-C(28)-H(28)	118.5
C(26)-C(27)-C(22)	117.1(5)
C(26)-C(27)-C(28)	125.1(4)
C(22)-C(27)-C(28)	117.7(4)
C(23)-C(22)-O(4)	116.0(5)
C(23)-C(22)-C(27)	123.2(5)
O(4)-C(22)-C(27)	120.8(4)
C(2)-C(7)-C(6)	115.4(5)
C(2)-C(7)-C(8)	118.5(5)
C(6)-C(7)-C(8)	126.1(5)
C(28)-C(29)-C(30)	123.0(4)
C(28)-C(29)-C(21)	118.3(4)
C(30)-C(29)-C(21)	118.7(4)
N(1)-C(12)-N(2)	123.1(5)
N(1)-C(12)-S(1)	117.2(4)
N(2)-C(12)-S(1)	119.7(4)
C(14)-C(15)-C(16)	120.5(5)
C(14)-C(15)-H(15)	119.8
C(16)-C(15)-H(15)	119.8
C(3)-C(2)-C(7)	124.7(5)
C(3)-C(2)-O(1)	116.0(5)
C(7)-C(2)-O(1)	119.3(5)
C(36)-C(35)-C(34)	122.0(5)
С(36)-С(35)-Н(35)	119.0
C(34)-C(35)-H(35)	119.0

C(9)-C(8)-C(7)	123.5(5)
C(9)-C(8)-H(8)	118.3
C(7)-C(8)-H(8)	118.3
C(37)-C(38)-C(39)	120.4(5)
C(37)-C(38)-H(38)	119.8
C(39)-C(38)-H(38)	119.8
N(6)-C(33)-C(34)	121.5(4)
N(6)-C(33)-H(33)	119.3
С(34)-С(33)-Н(33)	119.3
C(38)-C(39)-C(34)	120.8(4)
С(38)-С(39)-Н(39)	119.6
С(34)-С(39)-Н(39)	119.6
C(8)-C(9)-C(1)	117.5(5)
C(8)-C(9)-C(10)	122.9(4)
C(1)-C(9)-C(10)	119.6(4)
C(17)-C(18)-C(19)	119.3(5)
C(17)-C(18)-H(18)	120.4
C(19)-C(18)-H(18)	120.4
C(35)-C(36)-C(37)	119.4(5)
С(35)-С(36)-Н(36)	120.3
С(37)-С(36)-Н(36)	120.3
C(24)-C(23)-C(22)	118.9(5)
С(24)-С(23)-Н(23)	120.6
С(22)-С(23)-Н(23)	120.6
O(5)-C(21)-O(4)	116.5(4)
O(5)-C(21)-C(29)	125.5(5)
O(4)-C(21)-C(29)	118.0(4)
N(3)-C(13)-C(14)	120.4(5)
N(3)-C(13)-H(13)	119.8
C(14)-C(13)-H(13)	119.8
O(2)-C(1)-O(1)	115.6(4)
O(2)-C(1)-C(9)	125.6(5)
O(1)-C(1)-C(9)	118.8(4)
C(17)-C(16)-C(15)	120.0(5)
C(17)-C(16)-H(16)	120.0
C(15)-C(16)-H(16)	120.0
C(18)-C(19)-C(14)	121.4(5)
C(18)-C(19)-H(19)	119.3
C(14)-C(19)-H(19)	119.3

C(4)-C(3)-C(2)	118.2(5)
C(4)-C(3)-H(3)	120.9
C(2)-C(3)-H(3)	120.9
C(23)-C(24)-C(25)	119.7(5)
C(23)-C(24)-H(24)	120.1
C(25)-C(24)-H(24)	120.1
C(30)-C(31)-S(2)	112.2(4)
C(30)-C(31)-H(31)	123.9
S(2)-C(31)-H(31)	123.9
C(5)-C(6)-C(7)	121.3(5)
C(5)-C(6)-H(6)	119.3
C(7)-C(6)-H(6)	119.3
C(25)-C(26)-C(27)	119.4(5)
C(25)-C(26)-H(26)	120.3
C(27)-C(26)-H(26)	120.3
C(3)-C(4)-C(5)	119.8(5)
C(3)-C(4)-H(4)	120.1
C(5)-C(4)-H(4)	120.1
C(24)-C(25)-C(26)	121.6(5)
C(24)-C(25)-H(25)	119.2
C(26)-C(25)-H(25)	119.2
C(6)-C(5)-C(4)	120.6(5)
C(6)-C(5)-H(5A)	119.7
C(4)-C(5)-H(5A)	119.7
C(10)-C(11)-S(1)	111.6(4)
C(10)-C(11)-H(11)	124.2
S(1)-C(11)-H(11)	124.2
O(6)-C(40)-H(40A)	109.5
O(6)-C(40)-H(40B)	109.5
H(40A)-C(40)-H(40B)	109.5
O(6)-C(40)-H(40C)	109.5
H(40A)-C(40)-H(40C)	109.5
H(40B)-C(40)-H(40C)	109.5
O(3)-C(20)-H(20A)	109.5
O(3)-C(20)-H(20B)	109.5
H(20A)-C(20)-H(20B)	109.5
O(3)-C(20)-H(20C)	109.5
H(20A)-C(20)-H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5

	U11	U22	U33	U23	U13	U12	
S(2)	65(1)	55(1)	89(1)	1(1)	43(1)	9(1)	
S(1)	68(1)	64(1)	100(1)	-2(1)	48(1)	-11(1)	
O(1)	51(2)	55(2)	87(3)	-6(2)	32(2)	5(2)	
O(4)	55(2)	60(2)	86(3)	4(2)	35(2)	-3(2)	
O(6)	83(3)	46(2)	110(3)	-1(2)	45(2)	3(2)	
O(3)	77(3)	43(2)	123(3)	9(2)	44(2)	-1(2)	
N(1)	67(3)	42(3)	70(3)	-2(2)	39(2)	5(2)	
N(3)	67(3)	51(3)	76(3)	3(2)	38(2)	-2(2)	
N(4)	63(3)	45(3)	70(3)	0(2)	34(2)	-1(2)	
N(6)	67(3)	43(3)	75(3)	-7(2)	34(2)	5(2)	
O(5)	67(3)	74(3)	153(4)	11(2)	64(3)	4(2)	
N(5)	63(3)	47(3)	111(4)	-7(2)	46(3)	-2(2)	
O(2)	57(2)	79(3)	124(3)	-21(2)	44(2)	-1(2)	
N(2)	66(3)	51(3)	110(4)	-1(3)	50(3)	-4(2)	
C(32)	60(3)	52(3)	62(3)	1(3)	28(3)	9(3)	
C(30)	63(3)	44(3)	55(3)	4(2)	32(3)	8(3)	
C(37)	65(4)	38(3)	67(3)	-2(2)	33(3)	-2(2)	
C(17)	54(3)	59(4)	60(3)	7(3)	25(3)	3(3)	
C(34)	56(3)	45(3)	65(3)	-2(2)	33(3)	-2(2)	
C(14)	59(3)	57(3)	64(3)	5(3)	31(3)	9(3)	
C(10)	63(3)	51(3)	64(3)	-2(3)	34(3)	-4(3)	
C(28)	53(3)	53(3)	62(3)	2(2)	28(3)	2(2)	
C(27)	55(3)	46(3)	54(3)	3(2)	24(3)	-1(2)	
C(22)	62(3)	51(3)	62(3)	2(2)	32(3)	-1(3)	
C(7)	67(4)	50(3)	64(3)	-2(3)	31(3)	5(3)	
C(29)	57(3)	44(3)	65(3)	4(2)	34(3)	-2(2)	
C(12)	76(4)	61(4)	72(4)	0(3)	46(3)	-6(3)	
C(15)	59(3)	54(3)	94(4)	6(3)	44(3)	10(3)	
C(2)	81(4)	48(3)	58(3)	-3(3)	34(3)	0(3)	
C(35)	56(3)	57(3)	73(4)	-9(3)	28(3)	-10(3)	
C(8)	59(3)	56(3)	66(3)	-2(3)	32(3)	4(3)	
C(38)	69(4)	51(3)	87(4)	-9(3)	38(3)	-13(3)	
C(33)	59(3)	53(3)	74(4)	-6(3)	30(3)	4(3)	
C(39)	59(3)	51(3)	82(4)	-1(3)	39(3)	-1(3)	

Table S4. Anisotropic displacement parameters ($^{A2}x 10^{3}$) for skd19a. The anisotropic displacement factor exponent takes the form: $-2p^{2}[h^{2}a^{*2}U^{11} + ... + 2hka^{*}b^{*}U^{12}]$

C(9)	52(3)	64(4)	52(3)	-6(2)	25(3)	2(3)
C(18)	60(3)	62(4)	82(4)	9(3)	31(3)	21(3)
C(36)	54(3)	50(3)	82(4)	-6(3)	28(3)	-6(3)
C(23)	76(4)	47(4)	82(4)	4(3)	30(3)	-1(3)
C(21)	60(4)	58(4)	84(4)	5(3)	43(3)	-2(3)
C(13)	69(4)	57(4)	84(4)	2(3)	38(3)	-8(3)
C(1)	64(4)	49(4)	76(4)	-7(3)	36(3)	3(3)
C(16)	62(3)	64(4)	84(4)	6(3)	39(3)	6(3)
C(19)	48(3)	68(4)	85(4)	9(3)	30(3)	7(3)
C(3)	79(4)	60(4)	85(4)	-5(3)	40(3)	10(3)
C(24)	94(5)	39(3)	83(4)	0(3)	34(4)	0(3)
C(31)	61(3)	45(3)	81(4)	1(3)	38(3)	0(2)
C(6)	74(4)	59(4)	86(4)	1(3)	39(3)	-2(3)
C(26)	58(3)	58(4)	99(4)	7(3)	35(3)	2(3)
C(4)	86(5)	58(4)	90(4)	2(3)	43(4)	2(3)
C(25)	77(4)	58(4)	93(4)	9(3)	35(4)	14(3)
C(5)	80(4)	58(4)	111(5)	2(3)	52(4)	-11(3)
C(11)	59(3)	64(4)	93(4)	-5(3)	43(3)	-6(3)
C(40)	90(5)	52(4)	131(5)	13(3)	52(4)	18(3)
C(20)	84(5)	69(4)	156(6)	-18(4)	52(4)	-18(3)

Cyclic voltammograms of HTCs of aromatic aldehydes/ketones

Figure. S4 a) Cyclic voltammograms of HTCs of aromatic aldehydes (4e, 4f, 4k, 4l, 4n, 4o, 4p,4q, 4t & 4u) in CHCl₃; b) Cyclic voltammograms of HTCs of aromatic ketones (4ab, 4ad, & 4aj) in CHCl₃ (0.1 M Bu₄NPF₆ in CHCl₃) at a scan rate of 100 mV/s.