Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

Catalytic combustion of toluene over CeO₂–CoO_x composite

aerogels

Chao Miao ^a, Junjie Liu^b, Jinxian Zhao ^a, Yanhong Quan ^a, Tao Li ^a, Yongli Pei ^a,

Xiaoliang Li^a, Jun Ren^{a*}

a Key Laboratory of Coal Science and Technology (Taiyuan University of

Technology), Ministry of Education and Shanxi Province, No. 79 Yingze West Street,

Taiyuan 030024, China

b Division of Nanoscale Measurement and Advanced Materials, National

Institute of Metrology, No. 18, Bei San Huan Dong Lu, Chaoyang Dist, Beijing

100029, China

*Corresponding author. Mailing address for correspondence: No. 79 Yingze

West Street, Taiyuan 030024, China. Tel/Fax: +86 351 6018598.

E-mail address: renjun@tyut.edu.cn (J. Ren).

The carbon balance (B_c) mentioned in Section 2.3 can be calculated using the following equation:

$$B_{C} = \frac{n_{CO_{2},out} + 7n_{toluene,out}}{n_{toluene,in}}$$

 $n_{i,in} = the \ concentration \ of \ component \ i \ in \ the \ feed;$ $n_{i,out} = the \ concentration \ of \ component \ i \ in \ the \ outlet \ of \ reactor;$

Figure S1. (a) CO and CO₂ concentration in the products at different test conditions calculated from chromatograph equipped with a TDX-01 (b) Statistical results of Carbon Balance at different temperature. Reaction conditions: catalyst:CeO₂–CoO_x-10; catalyst weight=100 mg; reaction gas composition: 1000ppm toluene, 20 vol% O_2/N_2 .