Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Information

Supramolecular and theoretical perspective of 2,2':6',2"-terpyridine based Ni(II) and Cu(II) complexes: On the importance of C–H···Cl and π ··· π interaction

Pampi Pal,^a Kinsuk Das,^b Anowar Hossain,^a Antonio Frontera,^{*c} and Subrata Mukhopadhyay^{*a}

^aDepartment of Chemistry, Jadavpur University, Kolkata 700032, India ^bDepartment of Chemistry, Chandernagore College, Hooghly, West Bengal 712136, India ^cDepartament de Química, Universitat de les IllesBalears, Crta. deValldemossa km 7.5, Palma 07122, Baleares, Spain

Contents of the Supporting Information

Table S1.	Selected crystallographic features of structures 1 and 2.	Page S2
Table S2.	Selected bond distances (Å) and angles (o) in 1 and 2.	Page S3
Table S3.	Geometric features (distances in Å and angles in degrees) of $\pi \cdots \pi$ interactions	Page S4
	obtained for 1 and 2.	
Table S4.	Details of Hydrogen bond distances (Å) and angles (°) for 1 and 2.	Page S5
Table S5.	Geometric features (distances in Å and angles in degrees) of metal $\cdots \pi$ interaction obtained for complex 2 .	Page S5
Scheme S1	Schematic representations of the synthesis of complex 1 and 2.	Page S6
Figure S1.	Asymmetric unit of Complex 1	Page S6
Figure S2.	Asymmetric unit of Complex 2	Page S7
Figure S3.	IR spectra for Complex 1 and 2	Page S7
Figure S4.	UV-Vis-NIR spectra for Complex 1 and 2	Page S8
Figure S5.	PXRD patterns of experimental powder XRD simulated pattern from single crystal data for complex 1 and 2	Page S8
Figure S6.	TG curve for complex 1 and 2	Page S9

Compound	1	2
Empirical formula	C ₁₅ H ₁₅ Cl ₂ N ₃ NiO ₂	C ₁₅ H ₁₁ Cl ₂ CuN ₃
Formula weight	398.89	367.72
Temperature (K)	293 K	273 K
Wavelength (Å)	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic
Space group	P 2 ₁ /n	P 2 ₁ /c
Unit cell dimensions		
a (Å)	12.485(6)	10.671(10)
b (Å)	9.687(4)	8.258(7)
c (Å)	14.318(6)	16.090(16)
α (°)	90	90
β(°)	105.290(15)	94.686(3)
γ(°)	90	90
Volume (Å ³)	1670.4(13)	1413.2(2)
Crystal size (mm ³)	0.07x0.13x0.21	0.08x0.12x0.17
Ζ	4	4
Densitycal (Mg m ⁻³)	1.586	1.728
Absorption coefficient (mm ⁻¹)	1.492	1.917
F(000)	816.0	740.0
θ Range (°) for data collection	2.87 - 25.88	1.915 - 27.218
Index ranges	$-16 \le h \le 16$	$-13 \le h \le 13$
	$-12 \le k \le 12$	$-10 \le k \le 10$
	$-18 \le l \le 18$	$-20 \le l \le 20$
Goodness-of-fit on F ²	0.893	0.938
Independent reflections [Rint]	3686 (0.035)	3130
Absorption correction	Multi-scan	Multi-scan
Refinement method	Full-matrix least squares	Full-matrix least squares
	on F ²	on F ²
Data/restraints/parameters	3686/ 0/ 224	3130/ 0/ 234
Reflections collected	24244	20311
Final R indices[$I > 2\sigma(I)$]	R=0.0273	R=0.0240
··· -	wR ₂ =0.1204	$wR_2 = 0.1103$
Largest difference peak & hole(eÅ-3)	-1.27, 0.83	-0.92, 0.83

 Table S1. Selected crystallographic features of structures 1 and 2

Selected Bonds	Value (Å)	Selected Angles	(°)				
Complex 1							
Ni1 - N1 Ni1 - N2 Ni1 - N3 Ni1 - O1 Ni1 - O2 Ni1 - Cl1	2.105(2) 1.9854(19) 2.087(2) 2.097(2) 2.0557(18) 2.386(13)	N1 - Ni1 - N2 N2 - Ni1 - N3 N2 - Ni1 - O2 N2 - Ni1 - O1 N3 - Ni1 - O2 N3 - Ni1 - O1 Cl1 - Ni1 - O1 Cl1 - Ni1 - O2 N3 - Ni1 - O1 Cl1 - Ni1 - O2 N3 - Ni1 - O1 Cl1 - Ni1 - N1 Cl1 - Ni1 - N2 Cl1 - Ni1 - N3 O2 - Ni1 - O1	78.65(9) 78.69(9) 174.33(8) 91.07(8) 98.01(8) 157.34(9) 174.75(6) 90.51(5) 104.59(8) 89.04(9) 89.67(6) 94.18(6) 91.90(6) 84.25(8)				
	Cor	nplex 2					
Cu1 - N1 Cu1 - N2 Cu1 - N3 Cu1 - Cl1 Cu1 - Cl2	2.0552(18) 1.9614(16) 2.0572(17) 2.4699(6) 2.2496(6)	N1 - Cu1 - N2 N2 - Cu1 - N3 Cl1 - Cu1 - N1 Cl1 - Cu1 - N2 Cl1 - Cu1 - N3 Cl1 - Cu1 - Cl2 Cl2 - Cu1 - N1 Cl2 - Cu1 - N2 Cl2 - Cu1 - N3 N1 - Cu1 - N3	78.96(7) $78.82(7)$ $99.51(5)$ $98.36(5)$ $92.57(5)$ $104.39(2)$ $97.24(5)$ $157.25(5)$ $99.74(5)$ $156.00(7)$				

Table S2. Selected bond distances (Å) and angles (°) in 1 and 2 $\,$

Cg(ring I) - Cg(ring J)	Cg···Cg (Å)	Cg(I) …perp (Å)	Cg(J) …perp (Å)	(°)	β (°)	γ (°)	Symmetry
Complex 1							
Cg(3)····Cg(5)	3.593(2)	3.453	3.493	2.84	13.53	16.04	-1/2+x, 1/2-y, -1/2+z
Cg(5)····Cg(3)	3.593(2)	3.493	3.453	2.84	16.04	13.53	1/2+x, 1/2- y,1/2+z
Complex 2							
$Cg(1)\cdots Cg(5)$	3.4970(12)	3.277	3.342	5.59	17.11	20.43	1-x, 1-y, 1-z
$Cg(5)\cdots Cg(1)$	3.4969(12)	3.342	3.277	5.59	20.43	17.11	1-x, 1-y, 1-z
$Cg(2)\cdots Cg(2)$	3.5839(11)	3.348	3.348	0.02	20.90	20.90	1-x, 1-y, 1-z
$Cg(2)\cdots Cg(5)$	3.5184(12)	3.346	3.354	2.51	17.56	18.02	1-x, 1-y, 1-z
$Cg(5)\cdots Cg(2)$	3.5183(12)	3.354	3.346	2.51	18.02	17.56	1-x, 1-y, 1-z
$Cg(3)\cdots Cg(4)$	3.7469(12)	3.341	3.473	4.93	22.05	26.9	-x, 1-y, 1-z
$Cg(4)\cdots Cg(3)$	3.7468(12)	3.473	3.341	4.93	26.9	22.05	-x, 1-y, 1-z
$Cg(4)\cdots Cg(5)$	3.6812(13)	3.299	3.281	2.31	26.95	26.34	1-x, 1-y, 1-z
$Cg(5)\cdots Cg(4)$	3.6811(13)	3.281	3.299	2.31	26.34	26.95	1-x, 1-y, 1-z
$Cg(5)\cdots Cg(5)$	3.6706(13)	3.288	3.288	0.02	26.40	26.40	1-x, -y, 1-z

Table S3. Geometric features (distances in Å and angles in degrees) of $\pi \cdots \pi$ interactions obtained for 1 and 2

 α = Dihedral angle between ring I and ring J (°); β = Cg(I) \rightarrow Cg(J) or Cg(I) \rightarrow Me vector and normal to plane I (°); γ = Cg(I) \rightarrow Cg(J) vector and normal to plane J (°); Cg–Cg = distance between ring centroids (Å); CgI···Perp = perpendicular distance of Cg(I) on ring J (Å); CgJ···Perp = perpendicular distance of Cg(J) on ring I (Å).

Cg(3) = Centre of gravity of ring [N1/C1/C2/C3/C4/C5] and Cg(5) = Centre of gravity of ring [N3/C11/C12/C13/C14/C15] for complex**1**, Cg(1) = Centre of gravity of ring [Cu1/N1/C5/C6/N2], Cg(2) = Centre of gravity of ring [Cu1/N2/C10/C11/N3], Cg(3) = Centre of gravity of ring [N1/C1/C2/C3/C4/C5], Cg(4) = Centre of gravity of ring [N2/C6/C7/C8/C9/C10] and Cg(5) = Centre of gravity of ring [N3/C11/C12/C13/C14/C15].

D – H …A	D (D – H)	D (HA)	D(D···A)	<dha< th=""></dha<>	
Complex 1					
O1–H12····Cl2	0.78(4)	2.28(4)	3.052(3)	173(3)	
O1-H13····Cl2	0.72(3)	2.44(4)	3.115(3)	156(4)	
O2-H15…Cl1	0.83(4)	2.26(4)	3.073(2)	167(3)	
C4–H4····Cl1	0.93	2.82	3.693(3)	156	
Complex 2					
С2–Н2…С11	0.97(3)	2.76(3)	3.446(2)	128(2)	
C4–H4····Cl1	0.88(3)	2.64(3)	3.479(2)	159(2)	

Table S4. Details of Hydrogen bond distances (Å) and angles (°) for 1 and 2

Table S5. Geometric features (distances in Å and angles in degrees) of metal cation… π interaction obtained for complex 2

Cation …Cg	Cg(I) …Cation (Å)	Cation(J) …Perp (Å)	β (°)	Symmetry
Cu1…Cg (5)	3.848	3.465	25.8	1-x, 1-y, 1-z

Cg(5) = Centre of gravity of ring [N3/C11/C12/C13/C14/C15]

Scheme S1. Schematic representations of the synthesis of complex 1 and 2

Figure S1. Asymmetric unit of Complex 1

Figure S2. Asymmetric unit of Complex 2

Complex 2

Figure S3. IR spectra for Complex 1 and 2

Figure S4. UV – Vis -NIR spectra for Complex 1 and 2

Complex 1

Complex 2

Figure S5. PXRD patterns of experimental powder XRD (blue) for complex 1 and green for complex 2 and simulated pattern from single crystal data (black)

Figure S6. TGA of Complex 1 and 2 measured under N_2 atmosphere