Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

A Kinetic and Mechanistic Study of Analogous Bifunctional Dialkylamine Platinum(II) Complexes

Moses Ariyo Olusegun*^a, Desigan Reddy^a and Deogratius Jaganyi^{b,c}

New Journal of Chemistry, The Royal Society of Chemistry

Electronic Supporting Information (ESI)

The available ESI includes several Mass and NMR spectra, elemental analysis, wavelengths for kinetic measurements, concentration dependence and Eyring plots for determination of second order rate constant and activation parameters.

Fig. S3 Mass spectrum for cPtR

2218,4256

Page 1

Fig. S4 ¹HNMR and ¹⁹⁵PtNMR of cPtR

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2 Monoisotopic Mass, Odd and Even Electron Ions 29 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass) Elements Used: C: 0-5 H: 5-10 N: 0-5 CI: 0-2 194Pt: 0-1 tPtMa 0512 31 (1.013) Cm (1.61) TOF MS ES+ 3.39e+004 327.9865 100-326,9881 325.9861 329.9867 % 331.9888 334.0771 335.9899 321.1342 324.1196 324.9438 337.9236 333.0673 0-1.... 338.0 322.0 324.0 11111-1 0 336.0 334.0 330.0 332.0 326.0 328.0 Minimum: -1.5 Maximum: 5.0 5.0 50.0 Calc. Mass mDa PPM DHE 1-FIT i-FIT (Norm) Formula Mass 325.9861 325,9848 4.0 -1.0 152.7 0.0 C2 H10 M2 C12 194Pt 1.3

3

Fig. S6 ¹HNMR and ¹⁹⁵PtNMR of tPtM

Elementa	Composition	n Report					Page 1
Single Ma Tolerance = Element pro Number of	ss Analysis 5.0 PPM / D ediction: Off isotope peaks u	BE: min = -1 sed for i-FIT	.5, max = 1 = 2	50.0			
Monoisotopii 27 formula(e Elements Us C: 5-10 H:	c Mass, Even Ele) evaluated with 1 ed: 15-20 N: 0-5	ctron lons I results withir Na: 1-1 Ct: (i limits (up tr)-2 194Pt	o 20 closest r 0-1	esults for each	n mass)	
tPtR 0512 60 TOF MS ES+	(1.990) Cm (1.61)						
100- 				405.0385	407.03	409.0400	1.31e+004
295 0	2077 397.0788	399.3075 40 400.0	482.0	404.1396	************* 406.0	410.0	11.0403 413.3170 415.3011 412.0 414.0 416.0
Minimum: Maximum:		5.0	5.0	+1.5 50.0			
Mase	Calc. Mass	mDa	PPM	DBE	1-FIT	i-FIT (Norm) Formula
405,0385	405.0372	1,3	3.2	+1.5	181.5	0.0	C6 H18 N2 Na Cl2 194Pt

Fig. S8 ¹HNMR and ¹⁹⁵PtNMR of tPtR

Fig. S9 Elemental analysis of cPtM

Complex	Nucleophile	Wavelength (λ)
		Stopped-flow(nm)
cPt	TU	340
	DMTU	340
	TMTU	-
cPtM	TU	340
	DMTU	340
		-
cPtR	TU	340
	DMTU	340
tPt	TI	330
	DMTU	330
	TMTU	345
tPtM	TU	330
	DMTU	330
	TMTU	345
tPtR	TU	330
	DMTU	330
	TMTU	360

 Table S1
 Wavelengths for kinetic measurements used in the study

Supplementary Tables and Figures for the cis complexes

Table S2 Average observed rate constants, k_{obs} , s⁻¹, for the displacement of the aqua ligands in **cPt** with the nucleophiles, at pH = 2.0, T = 298.15 K, I = 0.1 M NaClO₄.

TU		DMTU	
Conc., M	$k_{\rm obs}$ (s ⁻¹)	Conc., M	$k_{\rm obs}$ (s ⁻¹)
0.15	0.01499	0.15	0.00670
0.30	0.02933	0.30	0.01340
0.45	0.04452	0.45	0.01958
0.60	0.05835	0.60	0.02653
0.75	0.07286	0.75	0.03320

Table S3 Average observed rate constants, k_{obs} , s⁻¹, for the displacement of the ammine ligands in **cPt** with the nucleophiles, at pH = 2.0, *T* = 298.15 K, *I* = 0.1 M NaClO₄.

TU		DMTU	
Conc., M	$k_{\rm obs}~({\rm s}^{-1})$	Conc., M	$k_{\rm obs}~({ m s}^{-1})$
0.15	0.00325	0.15	0.00134
0.30	0.00652	0.30	0.00264
0.45	0.00960	0.45	0.00386
0.60	0.01283	0.60	0.00515
0.75	0.01598	0.75	0.00647

Table S4Temperature dependence of $k_2/M^{-1}s^{-1}$, for the displacement of the aqua ligands in cPt by thenucleophiles at 60-fold at pH = 2.0, I = 0.1 M NaClO4

TU		DMTU	
1/T (K ⁻¹)	$\ln(k_2/T)$	1/T (K ⁻¹)	$\ln(k_2/T)$
0.00341	-8.1305	0.00341	-9.1597
0.00336	-8.0104	0.00336	-8.8318
0.00330	-7.8947	0.00330	-8.5148
0.00325	-7.7830	0.00325	-8.2083
0.00319	-7.6751	0.00319	-7.9118

Table S5 Temperature dependence of $k_2/M^{-1}s^{-1}$, for the displacement of the ammine ligands in **cPt** by the nucleophiles at 60-fold at pH = 2.0, *I* = 0.1 M NaClO₄

TU		DMTU	
1/T (K ⁻¹)	$\ln(k_2/T)$	1/T (K ⁻¹)	$\ln(k_2/T)$
0.00341	-9.9427	0.00341	-10.8448
0.00336	-9.5446	0.00336	-10.4549
0.00330	-9.1598	0.00330	-10.0780
0.00325	-8.7900	0.00325	-9.71380
0.00319	-8.4279	0.00319	-9.36140

Table S6 Average observed rate constants, $k_{obs.}$ s⁻¹, for the displacement of the aqua ligands in **cPtM** with the nucleophiles, at pH = 2.0, *T* = 298.15 K, *I* = 0.1 M NaClO₄.

TU		DMTU	
Conc., M	$k_{\rm obs}$ (s ⁻¹)	Conc., M	$k_{\rm obs}$ (s ⁻¹)
0.15	0.00895	0.15	0.00590
0.30	0.01729	0.30	0.01199
0.45	0.02593	0.45	0.01809
0.60	0.03505	0.60	0.02379
0.75	0.04385	0.75	0.02993

Table S7 Average observed rate constants, k_{obs} , s⁻¹, for the displacement of the amine ligands in **cPtM** with the nucleophiles, at pH = 2.0, T = 298.15 K, I = 0.1 M NaClO4.

TU		DMTU	
Conc., M	$k_{\rm obs}~({\rm s}^{-1})$	Conc., M	$k_{\rm obs}~({\rm s}^{-1})$
0.15	0.00122	0.15	5.40E-4
0.30	0.00243	0.30	0.00113
0.45	0.00364	0.45	0.00171
0.60	0.00488	0.60	0.00225
0.75	0.00615	0.75	0.00281

Table S8 Temperature dependence of $k_2/M^{-1}s^{-1}$, for the displacement of the aqua ligands in **cPtM** by the nucleophiles at 60-fold at pH = 2.0, *I* = 0.1 M NaClO₄

TU		DMTU	
1/T (K ⁻¹)	$\ln(k_2/T)$	1/T (K ⁻¹)	$\ln(k_2/T)$
0.00341	-8.8020	0.00341	-9.3005
0.00336	-8.3909	0.00336	-8.9110
0.00330	-7.9640	0.00330	-8.5312
0.00325	-7.5864	0.00325	-8.1324
0.00319	-7.2285	0.00319	-7.8063

Table S9 Temperature dependence of $k_2/M^{-1}s^{-1}$, for the displacement of the amine ligands in **cPtM** by the nucleophiles at 60-fold at pH = 2.0, I = 0.1 M NaClO₄

TU		DMTU	
1/T (K ⁻¹)	$\ln(k_2/T)$	1/T (K ⁻¹)	$\ln(k_2/T)$
0.00341	-10.9030	0.00341	-11.7030
0.00336	-10.3744	0.00336	-11.2698
0.00330	-9.87140	0.00330	-10.8223
0.00325	-9.39450	0.00325	-10.3786
0.00319	-9.01460	0.00319	-10.0246

Table S10Average observed rate constants, k_{obs} , s⁻¹, for the displacement of the aqua ligands in**cPtR** with the nucleophiles, at pH = 2.0, T = 298.15 K, I = 0.1 M NaClO4.

TU		DMTU	
Conc., M	$k_{\rm obs}$ (s ⁻¹)	Conc., M	$k_{\rm obs}~({\rm s}^{-1})$
0.15	4.13E-4	0.15	2.9965E-4
0.30	8.26E-4	0.30	5.9930E-4
0.45	0.00130	0.45	8.8401E-4
0.60	0.00173	0.60	0.0011202
0.75	0.00210	0.75	0.0014010

Table S11Temperature dependence of $k_2/M^{-1}s^{-1}$, for the displacement of the aqua ligands in cPtRby the nucleophiles at 60-fold at pH = 2.0, I = 0.1 M NaClO₄

TU		DMTU		
1/T (K ⁻¹)	$\ln(k_2/T)$	1/T (K ⁻¹)	$\ln(k_2/T)$	
0.00341	-11.9710	0.00341	-12.3101	
0.00336	-11.5880	0.00336	-11.9296	
0.00330	-11.2390	0.00330	-11.5530	
0.00325	-10.8831	0.00325	-11.1736	
0.00319	-10.5320	0.00319	-10.8420	

Fig. S11 Dependence of the *pseudo* first-order rate constants (k_{obs}) on the concentrations of the nucleophiles for the aqua and ammine substitution for cPt in NaClO₄ (I = 0.1 M) at 298.15 K.

Fig. S12 Eyring plots obtained for cPt with the nucleophiles for the substitution reactions over the temperature range 293.15 – 313.15 K in NaClO₄ (*I* = 0.1 M).

Fig. S13 Dependence of the *pseudo* first-order rate constants (k_{obs}) on the concentrations of the nucleophiles for the aqua and ammine substitution for cPtM in NaClO₄ (I = 0.1 M) at 298.15 K.

Fig. S14 Eyring plots obtained for cPtM with the nucleophiles for the substitution reactions over the temperature range 293.15 – 313.15 K in NaClO₄ (*I* = 0.1 M).

Fig. S15 Dependence of the *pseudo* first-order rate constants (k_{obs}) on the concentrations of the nucleophiles for the aqua substitution for **cPtR** in NaClO₄ (I = 0.1 M) at 298.15 K.

Fig. S16 Eyring plots obtained for **cPtR** with the nucleophiles for the substitution reactions over the temperature range 293.15 - 313.15 K in NaClO₄ (I = 0.1 M)

Table S12Average observed rate constants, k_{obs} , s⁻¹, for the displacement of the aqua ligands in tPtwith the nucleophiles, at pH = 2.0, T = 298.15 K, I = 0.1 M NaClO4.

TU		DMTU	DMTU		TMTU	
Conc., M	$k_{\rm obs}$ (s ⁻¹)	Conc., M	$k_{\rm obs}~({\rm s}^{-1})$	Conc., M	$k_{\rm obs}~({\rm s}^{-1})$	
0.02	0.88570	0.02	0.44470	0.02	0.11560	
0.04	1.76139	0.04	0.88944	0.04	0.22301	
0.06	2.65197	0.06	1.36503	0.06	0.33463	
0.08	3.54107	0.08	1.83272	0.08	0.44624	
0.10	4.42689	0.10	2.30257	0.10	0.55780	

TU		DMTU		TMTU	
1/T (K ⁻¹)	$\ln(k_2/T)$	1/T (K ⁻¹)	$\ln(k_2/T)$	1/T (K ⁻¹)	$\ln(k_2/T)$
0.00341	-5.3765	0.00341	-5.9580	0.00341	-7.5010
0.00336	-4.9525	0.00336	-5.5682	0.00336	-7.0386
0.00330	-4.4827	0.00330	-5.2301	0.00330	-6.5803
0.00325	-4.1163	0.00325	-4.8681	0.00325	-6.1379
0.00319	-3.7560	0.00319	-4.5157	0.00319	-5.7141

Table 13 Temperature dependence of $k_2/M^{-1}s^{-1}$, for the displacement of the aqua ligands in **tPt** by the nucleophiles at 60-fold at pH = 2.0, I = 0.1 M NaClO₄

Table S14Average observed rate constants, k_{obs} , s⁻¹, for the displacement of the aqua ligands in
<u>tPtM</u> with the nucleophiles, at pH = 2.0, T = 298.15 K, I = 0.1 M NaClO₄.

TU		DMTU		TMTU	
Conc., M	$k_{\rm obs}~({\rm s}^{-1})$	Conc., M	$k_{\rm obs}$ (s ⁻¹)	Conc., M	$k_{\rm obs}~({\rm s}^{-1})$
0.02	0.70761	0.02	0.35958	0.02	0.07501
0.04	1.38197	0.04	0.72830	0.04	0.15287
0.06	2.12432	0.06	1.09171	0.06	0.21985
0.08	2.83238	0.08	1.45619	0.08	0.30406
0.10	3.54455	0.10	1.81803	0.10	0.38153

Table S15Temperature dependence of $k_2/M^{-1}s^{-1}$, for the displacement of the aqua ligands in tPtMby the nucleophiles at 60-fold at pH = 2.0, I = 0.1 M NaClO₄

TU	· · · · ·	DMTU		TMTU	
1/T (K ⁻¹)	$\ln(k_2/T)$	1/T (K ⁻¹)	$\ln(k_2/T)$	1/T (K ⁻¹)	$\ln(k_2/T)$
0.00341	-5.50310	0.00341	-6.40301	0.00341	-7.49021
0.00336	-5.16405	0.00336	-5.98240	0.00336	-7.18778
0.00330	-4.81410	0.00330	-5.60226	0.00330	-6.79401
0.00325	-4.30090	0.00325	-5.20010	0.00325	-6.39420
0.00319	-3.90790	0.00319	-4.78801	0.00319	-5.99961

Table S16Average observed rate constants, k_{obs} , s⁻¹, for the displacement of the aqua ligands in **tPtR** with thenucleophiles, at pH = 2.0, T = 298.15 K, I = 0.1 M NaClO4.

TU		DMTU		TMTU	
Conc., M	$k_{\rm obs}$ (s ⁻¹)	Conc., M	$k_{\rm obs}~({\rm s}^{-1})$	Conc., M	$k_{\rm obs}~({\rm s}^{-1})$
0.02	0.37915	0.02	0.20575	0.02	0.04475
0.04	0.75827	0.04	0.41151	0.04	0.08950
0.06	1.13741	0.06	0.61726	0.06	0.13218
0.08	1.51701	0.08	0.82302	0.08	0.17771
0.10	1.89550	0.10	1.02877	0.10	0.22382

Table S17 Temperature dependence of $k_2/M^{-1}s^{-1}$, for the displacement of the aqua ligands in tPtR by the nucleophiles at 60-fold at pH = 2.0, $I = 0.1$ M NaClO ₄							
TU	-	DMTU		TMTU			
1/T (K ⁻¹)	$\ln(k_2/T)$	1/T (K ⁻¹)	$\ln(k_2/T)$	1/T (K ⁻¹)	$\ln(k_2/T)$		
0.00341	-3.10426	0.00341	-3.72431	0.00341	-5.31546		
0.00336	-2.75497	0.00336	-3.36618	0.00336	-4.90727		
0.00330	-2.31217	0.00330	-2.97527	0.00330	-4.54127		
0.00325	-2.01889	0.00325	-2.69267	0.00325	-4.14127		
0.00319	-1.56808	0.00319	-2.28466	0.00319	-3.82437		

Fig. S17 Dependence of the *pseudo* first-order rate constants (k_{obs}) on the concentrations of the nucleophiles for the aqua substitution for **tPt** in NaClO₄ (I = 0.1 M) at 298.15 K.

Fig. S18 Eyring plots obtained for t**Pt** with the nucleophiles for the substitution reactions over the temperature range 293.15 - 313.15 K in NaClO₄ (I = 0.1 M)

Fig. S19 Dependence of the *pseudo* first-order rate constants (k_{obs}) on the concentrations of the nucleophiles for the aqua substitution for **tPtM** in NaClO₄ (I = 0.1 M) at 298.15 K.

Fig. S20 Eyring plots obtained for t**PtM** with the nucleophiles for the substitution reactions over the temperature range 293.15 - 313.15 K in NaClO4 (I = 0.1 M)

Fig. S21 Determination of pK_a values for **cPt** using Boltzmann equation from the sigmoid curve at the inflection point

Fig. S22 Determination of pK_a values for **cPtM** using Boltzmann equation from the sigmoid curve at the inflection point