Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting information for

Constructing $BaLi_2Ti_6O_{14}@C$ nanofibers with low carbon content as high-performance anode materials for Li-ion batteries

Chao Wang,^a Xing Li,^{abc*} Yuzhou Liu,^a Nan Gao,^b Xing Xin ^{b*}

^aSchool of Physical Science and Technology, Ningbo University, Ningbo 315211, China ^bSchool of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China

^cKey Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province, Ningbo University, Ningbo 315211, China

Fig. S1. CV curves and capacity contribution (green region) at 0.1, 0.2, 0.4 mV s $^{-1}$

Table S1. Cycling stability comparison of MLi ₂ Ti ₆ O ₁₄ (M=Ba, Sr, Pb, 2Na) reported in recent literatu	teratures.
--	------------

Compound	Preparation	Morphology	Cycle performance	Reference
BaLi ₂ Ti ₆ O ₁₄ @C	Electrospinning	fibers	100 mA g ⁻¹ , 300	This work
			cycles, 140.1 mAh g-	
			1,	
			1000 mA g ⁻¹ , 800	
			cycles, 95.032 mAh	
			g-1	

BaLi ₂ Ti ₆ O ₁₄ @Ag	Solid-state method	particles	100 mA g ⁻¹ , 100 cycles, 117.0 mAh g ⁻ 1	
$BaLi_{1.9}Mg_{0.1}Ti_6O_{14}$	Solid-state method	particles	1000 mA g ⁻¹ , 200 cycles, 90.1 mAh g ⁻¹	
BaLi ₂ Ti ₆ O ₁₄	Solid-state reaction process	particles	100 mA g ⁻¹ , 100 cycles, 109 mAh g ⁻¹	
BaLi ₂ Ti ₆ O ₁₄	Electrospinning	fibers	100 mA g ⁻¹ , 10 cycles, 133.7 mAh g ⁻ 1	
BaLi ₂ Ti ₆ O ₁₄	Energy-savvy auto- combustion	particles	726 mA g ⁻¹ , 10 cycles, 55 mAh g ⁻¹	
BaLi ₂ Ti ₆ O ₁₄	Sol-gel synthesis	particles	10 mA g ⁻¹ , 50 cycles, 120 mAh g ⁻¹	
SrLi ₂ Ti ₆ O ₁₄	Sol-gel synthesis	particles	10 mA g ⁻¹ , 50 cycles, 92 mAh g ⁻¹	
SrLi ₂ Ti ₆ O ₁₄	Template method	particles	100 mA g ⁻¹ , 100 cycles, 102 mAh g ⁻¹	
SrLi ₂ Ti ₆ O ₁₄	Solid-state reaction	particles	158 mA g ⁻¹ , 1000 cycles, 100.2 mAh g ⁻ 1	
SrLi ₂ Ti ₆ O ₁₄	Solid-state reaction	particles	50 mA g ⁻¹ , 50 cycles, 155.9 mAh g ⁻¹	
Sr _{0.95} La _{0.05} Li ₂ Ti ₆ O ₁₄	Solid-state process	particles	100 mA g ⁻¹ , 100 cycles, 159.54 mAh g ⁻¹	

SrLi ₂ Ti ₆ O ₁₄	Solid-state synthesis	particles	0.05 C , 50 cycles, 115 mAh g ⁻¹	11
SrLi ₂ Ti ₆ O ₁₄ @C/N	Solid-state assisted solution method	particles	100 mA g ⁻¹ , 150 cycles, 156.58 mAh g ⁻¹	12
SrLi2Ti6O14@C/Ag	Solid-state assisted solution method	particles	100 mA g ⁻¹ , 200 cycles, 151.2 mAh g ⁻¹	13
SrLi ₂ Ti ₆ O ₁₄ /Ag	Sol–gel method	particles	50 mA g ⁻¹ , 50 cycles, 154.6 mAh g ⁻¹	14
PbLi ₂ Ti ₆ O ₁₄	Solid state method	particles	100 mA g ⁻¹ , 100 cycles, 147.9 mAh g ⁻ 1	15
PbLi ₂ Ti ₆ O ₁₄	Solid state method	particles	100 mA g ⁻¹ , 100 cycles, 142.0 mAh g ⁻¹	16
PbLi ₂ Ti ₆ O ₁₄ @NC	Solid-state method	particles	500 mA g ⁻¹ , 1500 cycles, 99.7 mAh g ⁻¹	17
$Na_2Li_2Ti_6O_{14}$	Electrospinning	fibers	100 mA g ⁻¹ , 100 cycles, 116.49 mAh g ⁻¹ , 1000 mA g ⁻¹ , 800 cycles, 77.8 mAh g ⁻¹	18
$Na_2Li_2Ti_6O_{14}$	Sol-gel method		100 mA g ⁻¹ , 60 cycles, 74 mAh g ⁻¹	19

$Na_2Li_2Ti_6O_{14}$	Solid-state method	particles	50 mA g ⁻¹ , 50 cycles, 86.9 mAh g ⁻¹	20
$Na_2Li_2Ti_6O_{14}$	Solid-state method	particles	100 mA g ⁻¹ , 50 cycles, 74 mAh g ⁻¹	21
Na ₂ Li ₂ Ti ₆ O ₁₄	Solid-state method and Chemical deposition decompositionmeth od	particles	100 mA g ⁻¹ , 50 cycles, 94.2 mAh g ⁻¹	22
$Na_2Li_2Ti_6O_{14}$	Solid-state method	particles	100 mA g ⁻¹ , 50 cycles, 75.2 mAh g ⁻¹	23
$Na_2Li_2Ti_6O_{14}$	Molten salt synthesis method	whiskers and particles	100 mA g ⁻¹ , 200 cycles, 70 mAh g ⁻¹ , 100 mA g ⁻¹ , 500 cycles, 62 mAh g ⁻¹	24
Na ₂ Li ₂ Ti ₆ O ₁₄	Sol-gel method	particles	20 mA g ⁻¹ , 40 cycles, 114.7 mAh g ⁻¹ , 20 mA g ⁻¹ , 40 cycles, 82.3 mAh g ⁻¹	25
Na ₂ Li ₂ Ti ₆ O ₁₄	Solid state reaction	particles	100 mA g ⁻¹ , 50 cycles, 177.5 mAh g ⁻ 1	26
Na ₂ Li ₂ Ti ₆ O ₁₄	Solid-state (dry) and Solution-assisted (wet) sonochemical Solvothermal method	particles	0.05 C, 50 cycles,> 80 mAh g ⁻¹ , 0.05 C, 50 cycles, 60 mAh g ⁻¹	27
$Na_2Li_2Ti_6O_{14}$	Solvothermal method	particles and spheres	50 mA g ⁻¹ , 50 cycles, 103.9/ 104.3 mAh g ⁻	28

$Na_2Li_2Ti_6O_{14}$	Solvent therma method	Hollow microspheres	50 mA g ⁻¹ , 50 cycles, 172.3 mAh g ⁻¹ ,	29
$Na_2Li_2Ti_6O_{14}$	Sol-gel synthesis	particles	10 mA g ⁻¹ , 50 cycles, 95 mAh g ⁻¹	30
$Na_2Li_2Ti_6O_{14}$	Solid-state reaction method	n particles	100 mA g ⁻¹ , 50 cycles, 211.8 mAh g ⁻¹	31
$Na_2Li_2Ti_6O_{14}$	Solid state method	particles	100 mA g ⁻¹ , 50 cycles, 75.2 mAh g ⁻¹	32
$Na_2Li_2Ti_6O_{14}$	Solid-state method	particles	100 mA g ⁻¹ , 50 cycles, 189.2 mAh g ⁻¹	33
$Na_2Li_2Ti_6O_{14}$	Solid-state method	particles	50 mA g ⁻¹ , 50 cycles, 206.7 mAh g ⁻¹	34
$Na_2Li_2Ti_6O_{14}$	Solid state reaction method	n particles	50 mA g ⁻¹ , 50 cycles, 73.2 mAh g ⁻¹	35
$Na_2Li_2Ti_6O_{14}$	Solid-state method	particles	500 mA g ⁻¹ , 100 cycles, 136.9 mAh g ⁻ 1	36

1

- 1. X. T. Lin, P. F. Wang, P. Li, H. X. Yu, S. S. Qian, M. Shui, D. J. Wang, N. B. Long, J. Shu, *Electrochim. Acta*, **2015**, *186*, 24-33.
- 2. X. T. Lin, S. S. Qian, H. X. Yu, L. Yan, P. Li, Y. Y. Wu, N. B. Long, M. Shui, J. Shu, *Acs Sustain. Chem. Eng.*, **2016**, *4*, 4859-4867.
- 3. M. H. Luo, X. T. Lin, H. Lan, H. X. Yu, L. Yan, S. S. Qian, N. B. Long, M. Shui, J. Shu, J. Electroanal. *Chem.*, **2017**, *786*, 86-93.
- 4. X. X. Wu, X. Li, C. C. Zhu, P. Li, H. Yu, Z. Guo, J. Shu, *Mater. Today Energy*, **2016**, *1-2*, 17-23.

- 5. A. Chaupatnaik, P. Barpanda, J. Mater. Res., 2019, 34, 158-168.
- 6. D. Dambournet, I. Belharouak, K. Amine, *Inorg. Chem.*, **2010**, *49*, 2822-2826.
- 7. D. Dambournet, I. Belharouak, J. Ma, K. Amine, J. Power Sources, 2011, 196, 2871-2874.
- 8. J. H. Liu, Y. A. Li, X. Q. Wang, Y. Gao, N. N. Wu, B. R. Wu, J. Alloy Compd., 2013, 581, 236-240.
- X. T. Lin, P. Li, P. F. Wang, H. X. Yu, S. S. Qian, M. Shui, X. Zheng, N. B. Long, J. Shu, *Electrochim.* Acta, 2015, 180, 831-844.
- 10. S. S. Qian, H. X. Yu, L. Yan, P. Li, H. Lan, H. J. Zhu, N. B. Long, M. Shui, J. Shu, *J. Power Sources*, **2017**, *343*, 329-337.
- 11. A. Dayamani, G. S. Shinde, A. Chaupatnaik, R. P. Rao, S. Adams, P. Barpanda, *J. Power Sources*, **2018**, *385*, 122-129.
- 12. Y. Y. Zhang, S. S. Qian, H. J. Zhu, X. Cheng, W. Q. Ye, H. X. Yu, L. Yan, M. Shui, J. Shu, *Ceram. Int.,* **2017**, *43*, 12357-12361.
- 13. Y. Y. Wu, S. S. Qian, H. Lan, L. Yan, H. X. Yu, X. Cheng, F. M. Ran, M. Shui, J. Shu, *Ceram. Int.*, **2017**, *43*, 7231-7236.
- 14. H. X. Yu, W. Q. Ye, X. Cheng, T. T. Liu, K. Goh, Z. B. Wang, J. Shu, Ceram. Int., 2019, 45, 6885-6890.
- 15. P. Li, S. S. Qian, H. X. Yu, L. Yan, X. T. Lin, K. Yang, N. B. Long, M. Shui, J. Shu, *J. Power Sources,* **2016**, *330*, 45-54.
- 16. J. D. Zhang, H. X. Yu, N. B. Long, T. T. Liu, X. Cheng, R. T. Zheng, H. J. Zhu, W. Q. Ye, J. Shu, *Ceram. Int.*, **2018**, *44*, 9506-9513.
- 17. H. X. Yu, Y. F. Zhang, X. Cheng, H. J. Zhu, R. T. Zheng, T. T. Liu, J. D. Zhang, M. Shui, J. Shu, *Electrochim. Acta*, **2018**, *283*, 1460-1467.
- 18. C. Wang, X. Xin, M. Shu, S. P. Huang, Y. Zhang, X. Li, Inorg. Chem. Front., 2019, 6, 866-867.
- 19. S. Y. Yin, L. Song, X. Y. Wang, Y. H. Huang, K. L. Zhang and Y. X. Zhang, *Electrochem. Commun.*, 2009, **11**, 1251-1254.
- 20. K. Q. Wu, J. Shu, X. T. Lin, L. Y. Shao, P. Li, M. Shui, M. M. Lao, N. B. Long and D. J. Wang, *J. Power Sources*, 2015, **275**, 419-428.
- P. Li, K. Q. Wu, P. F. Wang, X. T. Lin, H. X. Yu, M. Shui, X. Zhang, N. B. Long and J. Shu, *Ceram. Int.*, 2015, 41, 14508-14516.
- 22. S. S. Qian, H. X. Yu, L. Yan, P. Li, X. T. Lin, Y. Bai, S. J. Wang, N. B. Long, M. Shui and J. Shu, *Ceram. Int.*, 2016, **42**, 6874-6882.
- 23. J. Shu, K. Q. Wu, P. F. Wang, P. Li, X. T. Lin, L. Y. Shao, M. Shui, N. B. Long and D. J. Wang, *Electrochim. Acta*, 2015, **173**, 595-606.
- 24. S. Y. Yin, C. Q. Feng, S. J. Wu, H. L. Liu, B. Q. Ke, K. L. Zhang and D. H. Chen, *J. Alloys Compd.*, 2015, **642**, 1-6.
- 25. K. Q. Wu, D. J. Wang, X. T. Lin, L. Y. Shao, M. Shui, X. X. Jiang, N. B. Long, Y. L. Ren, J. Shu, J. *Electroanal. Chem.*, 2014, **717-718**, 10-16.
- 26. P. F. Wang, P. Li, T. F. Yi, X. T. Lin, H. X. Yu, Y. R. Zhu, S. S. Qian, M. Shui and J. Shu, *J. Power Sources*, 2015, **297**, 283-294.
- 27. S. Ghosh, Y. Kee, S. Okada and P. Barpanda, J. Power Sources, 2015, 296, 276-281.
- 28. S. S. Fan, H. T, Yu, Y. Xie, T. F. Yi and G. H. Tian, *Electrochim. Acta*, 2018, 259, 855-864.
- 29. S. S. Fan, H. Zhong, H. T. Yu, M. Lou, Y. Xie and Y. R. Zhu, Sci. China Mater., 2017, 60, 427-437.
- 30. D. Dambournet, L. Belharouak and K. Amine, Inorg. Chem., 2010, 49, 2822–2826.
- M. M. Lao, X. T. Lin, P. Li, L. Y. Shao, K. Q. Wu, M. Shui, N. B. Long, Y. L. Ren and J. Shu, *Ceram. Int.*, 2015, **41**, 2900-2907.

- 32. K. Q. Wu, J. Shu, X. T. Lin, L. Y. Shao, M. M. Lao, M. Shui, P. Li, N. B. Long and D. J. Wang, *J. Power Sources*, 2014, **272**, 283-290.
- 33. P. F. Wang, S. S. Qian, T. F. Yi, H. X. Yu, L. Yan, P. Li, X. T. Lin, M. Shui and J. Shu, *ACS Appl. Mater. Interfaces*, 2016, **8**, 10302–10314.
- H. Lan, S. S. Qian, Q. Wang, L. Yan, H. X. Yu, P. Li, N. B. Long, M. Shu and J. Shu, *Ceram. Int.*, 2017, 43, 1552-1557.
- 35. C. Sun, X. Li, X. Z. Wu, C. C. Zhu, H. X. Yu, Z. Y. Guo and J. Shu, *J. Electroanal. Chem.*, 2017, **802**, 100-108.
- 36. X. Han, X. Gui, W. Tao, X. F. Li and T. F. Yi, *Ceram. Int.*, 2018, **44**, 12273-12281.