Supporting Information

Gold Nanoparticles Decorated Polypyrrole/graphene Oxide

Nanosheets as a Modified Electrode for Simultaneous

Determination of Ascorbic acid, Dopamine and Uric acid

Chaoli Tan^{a, b, §}, Jie Zhao^{c, §}, Peng Sun^{a, b, *}, Wei Zheng^{d, *}, Guofeng Cui^{a, b, *}

^aKey Laboratory for Polymeric Composite & Functional Materials of Ministry of

Education, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China

^bKey Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong

Province, Sun Yat-sen University, Guangzhou, 510275, China

°School of Mechanical and Automotive Engineering, South China University of

Technology, Guangzhou, 510640, China

^d William and Mary Research Institute, The College of William and Mary, VA, USA Corresponding to e-mail: cuigf@mail.sysu.edu.cn; sunp25@mail2.sysu.edu.cn; wzheng@email.wm.edu;

§ These two authors contribute equally to this work

Fig. S1. (a) SEM image of pure PPy on CFP. (b) FTIR spectra of (i) GO, (ii) Ppy, (iii) GO/PPy, and (iv) Au@GO/PPy. (c) EDS image of Au@GO/PPy

Fig. S2. CV curves of Au@GO/PPy/CFP in 0.1 M PBS (pH = 7.0) containing (a) 1 mM AA, (b) 1 mM DA and (c) 1 mM UA at different scan rates (50–200 mV s⁻¹). (d-f) Correponding plots of the anodic peak current *vs.* scan rate for (d) AA, (e) DA and (f) UA respectively.

Fig. S3. (a)-(e)SEM of AuNPs on GO/PPy/CFP prepared with different scan number of CV(1, 3, 6, 9, 12 respectively).

Fig. S4. (a)CV curves and of different AuNPs@GO/PPy/CFP prepared with various scan number in 0.1 M PBS containing the mixture of 1mM AA 1mM DA and 1mM UA. (b) Peak current of CV curves.

Fig. S5. DPV cures of AuNPs@GO/PPy/CFP in 0.1 M PBS (pH=7.0) with different concentrations of AA, DA and UA. (a) 10–1600 μ M AA, (c) 0.15–60 μ M DA, (e) 2–437.5 μ M UA. (b),(d),(f) Correponding plots of the anodic peak current *vs.* concentrations for AA, DA and UA respectively(n = 3).

Fig. S6. Amperometric responses of AuNPs@GO/PPy/CFP in 0.1M PBS containing (a) 40 μ M AA, (b) 20 μ M DA and (c) 40 μ M UA respectively for stability test. (d) Long term stability of AuNPs@GO/PPy/CFP toward 150 μ M AA, 5 μ M DA and 100 μ M UA for two weeks.

Fig. S7. DPV cures of AuNPs@GO/PPy/CFP in diluted urine (n = 3).

 Table S1. Comparison of different modified electrodes for the selective detection of AA, DA and UA.

Table S2. Determination of AA, DA and UA in human urine with AuNPs@GO/PPy/CFP (n=3).

Fig. S1. (a) SEM image of pure PPy on CFP. (b) FTIR spectra of (i) GO, (ii) Ppy, (iii) GO/PPy, and (iv) Au@GO/PPy. (c) EDS image of Au@GO/PPy

Fig. S2. CV curves of AuNPs@GO/PPy/CFP in 0.1 M PBS (pH=7.0) containing (a) 1 mM AA, (b) 1 mM DA and (c) 1 mM UA at different scan rates (50–200 mV s⁻¹). (d-f) Correponding plots of the anodic peak current *vs.* scan rate for (d) AA, (e) DA and (f) UA respectively.

9, 12 respectively).

Fig. S4. (a)CV curves and of different AuNPs@GO/PPy/CFP prepared with various scan number of CV in 0.1 M PBS containg the mixture of 1mM AA 1mM DA and 1mM UA. (b) Peak current of CV curves.

Fig. S5. DPV cures of AuNPs@GO/PPy/CFP in 0.1 M PBS (pH=7.0) with different concentrations of AA, DA and UA. (a) 10–1600 μ M AA, (c) 0.15–60 μ M DA, (e) 2–437.5 μ M UA. (b),(d),(f) Corresponding plots of the anodic peak current *vs.* concentrations for AA, DA and UA respectively. (n = 3)

Fig. S6. Amperometric responses of AuNPs@GO/PPy/CFP in 0.1M PBS containing (a) 40 μ M AA, (b) 20 μ M DA and (c) 40 μ M UA respectively for stability test. (d) Long term stability of AuNPs@GO/PPy/CFP toward 150 μ M AA, 5 μ M DA and 100 μ M UA for two weeks.

Fig. S7. DPV curve of AuNPs@GO/PPy/CFP in urine diluted 50 times (n = 3).

I	JA	١.
	~ 1	••

Electrode -	Linear range (µM)		Detection limit (µM)				
	AA	DA	UA	AA	DA	UA	Reference
RGO ^a /AuNPs	10-1000	0.1-100	0.1-100	5.7	0.69	2.2	1
ZnCl ₂ -CF ^b /GCE	0.05-200	2-2000	1-2500	0.02	0.16	0.11	2
PImox ^c –GO/GCE	75-2275	12-278	3.6-249.6	18	0.63	0.59	3
G ^d -30	5-1000	3-140	0.5-150	17.8	1.44	0.29	4
AuNPs-GO/Au-IDA ^e	4.6-193	—	2-1050	1.4	_	0.62	5
OPPy/ERGO ^f	_	2.0–160 0.4–517	—	_	0.5	_	6
CTAB- GO/MWCNT/GCE	5.0-300	5.0-500	3.0-60	1.0	1.5	1.0	7
H-GO/GCE ^g	1-100	0.5-40	0.5-50	0.3	0.17	0.17	8
AuNPs@GO/PPy/CFP	10-200 200-1400	0.2-55	2-412	3.03	0.083	1.82	This work

- ^a RGO: reduced graphene oxide
- ^b CF: kiwi skin-derived microporous carbons
- ^c PImox: overoxidized polyimidazole
- ^dG: graphene ink coated glass
- ^e Au-IDA: gold interdigitated microelectrodes array
- ^fOPPy/ERGO: overoxidized polypyrrole /reduced graphene oxide

^gH-GO: hemin functionalized graphene oxide

Analyte	Detected (µM)	Added (μM)	Found (µM)	Recovery (%)	RSD (%)
AA		100	109	109	0.58
		200	208	104	1.04
		300	303	101	1.16
DA		2.00	1.94	96.8	0.73
		6.00	5.92	98.6	1.40
		10.0	9.81	98.1	0.87
UA	31.1	20.0	50.9	99.6	1.58
		40.0	73.2	103	2.02

Table S2. Determination of AA, DA and UA in human urine with AuNPs@GO/PPy/CFP (n=3)

Reference

- 1 C.-S. Lee, S. Yu and T. Kim, *Nanomaterials*, 2017, **8**, 17.
- 2 W. Zhang, L. Liu, Y. Li, D. Wang, H. Ma, H. Ren, Y. Shi, Y. Han and B. C. Ye, *Biosens. Bioelectron.*, 2018, **121**, 96–103.
- 3 X. Liu, L. Zhang, S. Wei, S. Chen, X. Ou and Q. Lu, *Biosens. Bioelectron.*, 2014, **57**, 232–238.
- 4 L. Fu, A. Wang, G. Lai, W. Su, F. Malherbe, J. Yu, C. T. Lin and A. Yu, *Talanta*, 2018, **180**, 248–253.
- 5 A. Abellán-Llobregat, L. Vidal, R. Rodríguez-Amaro, Á. Berenguer-Murcia, A. Canals and E. Morallón, *Electrochim. Acta*, 2017, **227**, 275–284.
- 6 X. Chen, D. Li, W. Ma, T. Yang, Y. Zhang and D. Zhang, *Microchim. Acta*, , DOI:10.1007/s00604-019-3518-2.
- 7 Y. J. Yang and W. Li, *Biosens. Bioelectron.*, 2014, **56**, 300–306.
- 8 H. L. Zou, B. L. Li, H. Q. Luo and N. B. Li, Sensors Actuators B Chem., 2015,

, 535–541.