Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

SMM behaviour of heterometallic dinuclear $Cu^{II}Ln^{III}$ (Ln = Tb and Dy) complexes derived from N₂O₃ donor unsymmetrical ligands

Souvik Maity,†Pradip Bhunia,†Kana Ichihashi,§ Takayuki Ishida,§ Ashutosh Ghosh*†

[†]Department of Chemistry, University College of Science, University of Calcutta,92 APC Road, Kolkata 700009, India. E-mail: <u>ghosh_59@yahoo.com</u>

§Department of Engineering Science, The University of Electro-Communications, Chofu, Tokyo, 182-8585, Japan

Fig. S1 ESI-MS spectrum of complex 1 (CuL¹).

Fig. S2 ESI-MS spectrum of complex 2 (CuL²).

Fig. S3 ORTEP view of complex **4** with 30% ellipsoid probability. Solvent molecule, disordered atoms have been omitted for clarity.

Fig. S4 ORTEP view of complex **5** with 30% ellipsoid probability. Solvent molecule, disordered atoms have been omitted for clarity.

Fig. S5 ORTEP view of complex **6** with 30% ellipsoid probability. Solvent molecule, disordered atoms have been omitted for clarity.

Fig. S6 Coordination polyhedra around the lanthanide centre for complexes 3–6.

Table S1 Selected bond lengths (A	(Å), bond angles (°) and	l torsion angles (°)	of complex 3.
-----------------------------------	--------------------------	----------------------	---------------

	3 (M = Tb1)
M(1)-O(1)	2.398(3)
M(1)-O(2)	2.338(3)
M(1)–O(3A)	2.604(11)
M(1)-O(4)	2.527(3)
M(1)–O(6)	2.419(3)
M(1)-O(7)	2.489(3)
M(1)-O(9)	2.483(3)
M(1)-O(10)	2.665(4)

M(1)-O(12)	2.488(4)
M(1)-O(13)	2.389(4)
M(1)–O(3B)	2.700(3)
Cu(1)–O(1)	1.934(3)
Cu(1)–O(2)	1.931(3)
Cu(1)–O(10)	2.632(4)
Cu(1)–N(1)	1.943(4)
Cu(1)–N(2)	1.944(4)
O(1)-M(1)-O(2)	64.09(9)
O(1)-M(1)-O(3A)	124.3(3)
O(1)-M(1)-O(4)	123.25(11)
O(1)-M(1)-O(6)	74.77(11)
O(1)-M(1)-O(7)	88.11(10)
O(1)-M(1)-O(9)	74.82(10)
O(1)-M(1)-O(10)	67.75(12)
O(1)-M(1)-O(12)	112.70(13)
O(1)-M(1)-O(13)	152.19(12)
O(1)-M(1)-O(3B)	119.0(7)
O(2)-M(1)-O(3A)	62.9(3)
O(2)-M(1)-O(4)	115.32(11)
O(2)-M(1)-O(6)	80.46(10)
O(2)-M(1)-O(7)	148.66(10)
O(2)-M(1)-O(9)	126.77(10)
O(2)-M(1)-O(10)	69.16(11)
O(2)-M(1)-O(12)	75.00(11)
O(2)-M(1)-O(13)	136.21(11)
O(2)-M(1)-O(3B)	61.2(7)
O(3A)-M(1)-O(4)	68.7(3)
O(3A)-M(1)-O(6)	81.1(3)
O(3A)-M(1)-O(7)	134.7(3)

O(3A)-M(1)-O(9)	156.2(3)
O(3A)-M(1)-O(10)	106.9(3)
O(3A)-M(1)-O(12)	67.9(3)
O(3A)-M(1)-O(13)	82.4(3)
O(4)-M(1)-O(6)	51.39(11)
O(4)-M(1)-O(7)	66.88(11)
O(4)-M(1)-O(9)	115.06(11)
O(4)-M(1)-O(10)	168.94(13)
O(4)-M(1)-O(12)	121.87(13)
O(4)-M(1)-O(13)	70.38(12)
O(3B)-M(1)-O(4)	64.0(6)
O(6)-M(1)-O(7)	78.32(9)
O(6)-M(1)-O(9)	120.42(10)
O(6)-M(1)-O(10)	139.15(12)
O(6)-M(1)-O(12)	146.72(11)
O(6)-M(1)-O(13)	121.58(13)
O(3B)-M(1)-O(6)	71.8(7)
O(7)-M(1)-O(9)	50.79(10)
O(7)–M(1)–O(10)	115.11(11)
O(7)-M(1)-O(12)	132.51(11)
O(7)-M(1)-O(13)	75.02(12)
O(3B)-M(1)-O(7)	130.9(6)
O(9)-M(1)-O(10)	64.70(11)
O(9)-M(1)-O(12)	92.45(12)
O(9)-M(1)-O(13)	77.39(13)
O(3B)-M(1)-O(9)	164.8(7)
O(10)-M(1)-O(12)	48.18(15)
O(10)-M(1)-O(13)	99.27(12)
O(3B)-M(1)-O(10)	113.0(6)
O(12)-M(1)-O(13)	67.30(13)

O(3B)-M(1)-O(12)	76.8(7)
O(3B)-M(1)-O(13)	88.5(7)
O(1)–Cu(1)–O(2)	81.14(11)
O(1)-Cu(1)-O(10)	74.89(12)
O(1)–Cu(1)–N(1)	93.80(13)
O(1)–Cu(1)–N(2)	165.29(14)
O(2)–Cu(1)–O(10)	75.63(12)
O(2)–Cu(1)–N(1)	163.55(14)
O(2)–Cu(1)–N(2)	92.96(14)
O(10)-Cu(1)-N(1)	87.95(15)
O(10)-Cu(1)-N(2)	116.86(15)
N(1)-Cu(1)-N(2)	95.39(15)
M(1)–O(1)–Cu(1)	100.17(11)
M(1)–O(2)–Cu(1)	102.40(11)
M(1)-O(4)-N(3)	94.0(3)
M(1)-O(6)-N(3)	98.7(2)
M(1)-O(7)-N(4)	96.3(2)
M(1)-O(9)-N(4)	97.2(2)
M(1)-O(10)-Cu(1)	78.08(11)
M(1)-O(10)-N(5)	93.8(3)
Cu(1)–O(10)–N(5)	118.6(3)
M(1)-O(12)-N(5)	101.9(3)
Cu(1)-O(1)-O(2)-	147.1(1)
Ln(1)	

 Table S2 Selected bond lengths (Å), bond angles (°) and torsion angles (°) of complexes 4–6.

	4 (M = Dy1)	5 (M = Tb2)	6 (M = Dy2)
M(1)-O(1)	2.389(4)	2.385(2)	2.357(3)
M(1)-O(2)	2.325(3)	2.340(2)	2.315(3)
M(1)-O(3)	2.616(4)	2.618(2)	2.593(4)

M(1)-O(4)	2.520(4)	2.534(3)	2.508(3)
M(1)-O(6)	2.414(4)	2.419(2)	2.387(3)
M(1)-O(7)	2.479(4)	2.489(2)	2.461(3)
M(1)–O(9)	2.469(4)	2.509(2)	2.485(4)
M(1)-O(10)	2.694(6)	2.620(3)	2.615(5)
M(1)–O(12)	2.467(5)	2.519(3)	2.482(4)
M(1)–O(13)	2.389(4)	2.376(2)	2.351(4)
Cu(1)–O(1)	1.946(3)	1.941(2)	1.933(3)
Cu(1)–O(2)	1.930(3)	1.930(2)	1.919(3)
Cu(1)–O(10)	2.613(5)	2.668(3)	2.616(4)
Cu(1)–N(1)	1.948(4)	1.944(3)	1.934(4)
Cu(1)–N(2)	1.951(4)	1.952(3)	1.945(3)
O(1)-M(1)-O(2)	64.34(11)	64.01(7)	64.28(11)
O(1)-M(1)-O(3)	123.72(10)	122.72(7)	123.20(10)
O(1)-M(1)-O(4)	123.30(13)	123.20(7)	123.40(11)
O(1)-M(1)-O(6)	74.91(13)	74.98(7)	75.11(11)
O(1)-M(1)-O(7)	87.78(13)	87.64(7)	87.41(11)
O(1)-M(1)-O(9)	74.76(12)	73.65(7)	73.58(10)
O(1)-M(1)-O(10)	67.62(14)	69.35(9)	68.72(12)
O(1)-M(1)-O(12)	112.38(15)	113.15(9)	112.72(13)
O(1)-M(1)-O(13)	152.02(12)	150.83(8)	150.74(11)
O(2)–M(1)–O(3)	62.82(12)	62.69(7)	62.84(11)
O(2)–M(1)–O(4)	115.79(11)	115.94(8)	115.93(11)
O(2)–M(1)–O(6)	80.51(12)	80.88(7)	80.74(11)
O(2)-M(1)-O(7)	148.68(13)	147.77(8)	147.83(12)
O(2)–M(1)–O(9)	126.56(13)	126.51(7)	126.35(11)
O(2)-M(1)-O(10)	68.65(13)	69.54(7)	69.25(11)
O(2)-M(1)-O(12)	74.88(14)	72.53(8)	72.66(12)
O(2)-M(1)-O(13)	135.82(13)	135.89(8)	135.64(12)
O(3)-M(1)-O(4)	67.53(13)	66.90(7)	66.75(11)

O(3)-M(1)-O(6)	78.74(14)	77.47(7)	77.48(11)
O(3)-M(1)-O(7)	133.72(13)	132.53(7)	132.56(11)
O(3)-M(1)-O(9)	157.74(13)	161.08(7)	160.44(11)
O(3)-M(1)-O(10)	108.38(15)	108.84(8)	109.05(12)
O(3)-M(1)-O(12)	70.53(15)	68.26(8)	68.90(12)
O(3)-M(1)-O(13)	83.38(13)	85.43(8)	85.02(12)
O(4)-M(1)-O(6)	51.54(14)	51.25(8)	51.44(12)
O(4)-M(1)-O(7)	66.71(14)	65.86(7)	66.05(11)
O(4)-M(1)-O(9)	114.98(13)	114.04(7)	114.46(11)
O(4)-M(1)-O(10)	169.02(16)	167.35(9)	167.78(13)
O(4)-M(1)-O(12)	122.39(17)	120.62(9)	121.09(13)
O(4)-M(1)-O(13)	70.43(14)	72.14(8)	72.03(11)
O(6)-M(1)-O(7)	78.51(13)	76.95(7)	77.22(12)
O(6)-M(1)-O(9)	121.00(14)	118.64(7)	119.36(11)
O(6)-M(1)-O(10)	138.89(16)	140.87(9)	140.24(12)
O(6)-M(1)-O(12)	146.93(15)	143.44(8)	143.90(12)
O(6)-M(1)-O(13)	121.84(14)	123.19(7)	123.30(11)
O(7)-M(1)-O(9)	51.04(13)	50.60(7)	50.98(11)
O(7)-M(1)-O(10)	115.28(15)	116.27(8)	116.10(12)
O(7)-M(1)-O(12)	132.32(15)	136.66(8)	136.23(12)
O(7)-M(1)-O(13)	75.42(15)	76.29(8)	76.48(12)
O(9)-M(1)-O(10)	64.70(15)	65.84(8)	65.38(11)
O(9)-M(1)-O(12)	91.61(16)	97.48(8)	96.22(12)
O(9)-M(1)-O(13)	77.29(15)	77.36(8)	77.31(12)
O(10)-M(1)-O(12)	47.69(18)	48.54(10)	48.33(14)
O(10)-M(1)-O(13)	99.27(15)	95.93(8)	96.45(12)
O(12)-M(1)-O(13)	67.13(16)	67.43(8)	67.36(12)
O(1)-Cu(1)-O(2)	80.77(13)	80.66(9)	80.39(13)
O(1)-Cu(1)-O(10)	75.47(16)	74.67(9)	74.76(14)
O(1)-Cu(1)-N(1)	93.94(15)	93.13(11)	93.23(15)

O(1)-Cu(1)-N(2)	165.07(14)	167.16(10)	166.92(13)
O(2)–Cu(1)–O(10)	75.95(15)	74.30(9)	74.90(13)
O(2)-Cu(1)-N(1)	163.71(15)	164.18(10)	164.68(14)
O(2)-Cu(1)-N(2)	93.17(16)	92.76(12)	92.76(15)
O(10)-Cu(1)-N(1)	87.82(18)	90.06(11)	90.02(15)
O(10)-Cu(1)-N(2)	116.48(18)	114.32(11)	114.40(16)
N(1)-Cu(1)-N(2)	95.39(18)	95.92(13)	96.00(17)
M(1)-O(1)-Cu(1)	100.00(14)	100.44(9)	100.39(14)
M(1)-O(2)-Cu(1)	102.72(12)	102.36(9)	102.33(12)
M(1)-O(4)-N(3)	93.9(3)	93.77(18)	93.9(3)
M(1)-O(6)-N(3)	98.4(3)	98.89(18)	99.2(3)
M(1)-O(7)-N(4)	96.1(3)	97.10(17)	97.1(2)
M(1)-O(9)-N(4)	97.5(3)	96.74(16)	96.5(3)
M(1)–O(10)–Cu(1)	77.78(15)	78.24(8)	78.44(12)
M(1)-O(10)-N(5)	93.2(4)	95.3(2)	94.8(3)
Cu(1)–O(10)–N(5)	119.5(4)	114.8(19)	116.2(3)
M(1)-O(12)-N(5)	102.9(4)	99.4(2)	100.5(4)
Cu(1)-O(1)-O(2)-	147.2(1)	146.8(1)	146.7(1)
Ln(1)			

Table S3 SHAPE analysis for lanthanide centres in complexes 3–6.

Geometry	Symmetry	Geometry (in	Complex	Complex	Complex	Complex
		words)	3	4	5	6
DP-10	D _{10h}	Decagon	34.101	33.874	33.718	33.741
EPY-10	C _{9v}	Enneagonal pyramid	23.093	23.253	22.861	22.898
OBPY-10	D _{8h}	Octagonal bipyramid	15.670	15.618	15.515	15.521
PPR-10	D _{5h}	Pentagonal prism	10.172	10.351	10.377	10.489
PAPR-10	D _{5d}	Pentagonal	9.180	9.254	9.246	9.321

		antiprism				
JBCCU-10	D_{4h}	Bicapped cube J15	8.501	8.261	9.191	9.017
JBCSAPR- 10	D _{4d}	Bicapped square antiprism J17	4.252	4.015	4.746	4.543
JMBIC-10	C _{2v}	Metabidiminished icosahedron J62	5.926	5.961	5.969	5.977
JATDI-10	C _{3v}	Augmented tridiminished icosahedron J64	17.018	17.020	17.075	17.080
JSPC-10	C _{2v}	Sphenocorona J87	3.066	3.118	2.888	2.844
SDD-10	D ₂	Staggered Dodecahedron (2:6:2)	4.840	5.004	4.753	4.804
TD-10	C _{2v}	Tetradecahedron (2:6:2)	5.065	4.926	4.966	4.979
HD-10	D _{4h}	Hexadecahedron (2:6:2) or (1:4:4:1)	6.571	6.481	7.137	7.046

Table S4 Geometrical features of hydrogen bonding interactions (distances (Å) and angles (°)) of Complexes **3–6**.

Complex	D-H···A	D-H	Н…А	D····A	∠D–H…A
3	013–H13A…011	0.85	1.88	2.710(5)	167
	O13−H13B…O7	0.82	2.10	2.848(5)	151
4	O13−H13A…O4	0.85	2.56	3.353(12)	156
	O13−H13B…O11	0.89	1.82	2.705(7)	173
5	O13−H13A…O7	0.87	2.07	2.769(3)	137
	O13−H13B…O11	0.87	1.88	2.726(4)	163
6	O13−H13A…O7	0.87	2.04	2.760(5)	139
	O13−H13B…O11	0.87	1.88	2.710(6)	158

Fig. S7 AC magnetic susceptibility results in dc applied fields of 0 Oe (a) and 2000 Oe for **5** (b) Arrhenius plot (c) and Cole-Cole plot (d) from the 2000 Oe applied data for **5**.

Fig. S8 AC magnetic susceptibility results in dc applied fields of 0 Oe (a) and 2000 Oe for 6 (b) Arrhenius plot (c) and Cole-Cole plot (d) from the 2000 Oe applied data for 6.

0.0∟ 1.6

 $\chi_{\rm m}^{2.0} = 2.4 = 2.8 \ \chi_{\rm m}^{2.0} / \rm cm^3 \, mol^{-1}$

3.2

2.0

-10

-11

0.20

0.24

 T^{-1}/K^{-1}

0.28

0.32