Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

Three AIE-ligand-based Cu(I) Coordination Polymers: Synthesis,

Structures and Luminescence Sensing TNP

Jinfang Zhang*, Hongchen Xia, Simeng Ren, Wen Jia, Chi Zhang*

International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical

and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China

Table of contents

- 1. Fig. S1 The asymmetric unit of 1.
- 2. Fig. S2 The asymmetric unit of 2.
- 3. Fig. S3 ABAB-arranged rhombic channels in 2 viewed along c axis.
- 4. Fig. S4 The asymmetric unit of 3.
- 5. Fig. S5 The windmill-like shape in 3.
- 6. Fig. S6 The angle between two pyridine rings of bridged DPMF in 1 (a), 2 (b) and 3 (c).
- 7. Fig. S7 The PXRD patterns of 1 (a), 2 (b) and 3 (c).
- 8. Fig. S8 The PXRD patterns of 3 in different situations.
- 9. Fig. S9 The TGA curves of 1-3.

10. Fig. S10 Luminescence quenching spectra of **3** for NB (a), 1,3-DNB (b), 4-NT (c) and 2,4-DNT (d).

11. Fig. S11 Stern-Volmer plot for NB (a), 1,3-DNB (b), 4-NT (c) and 2,4-DNT (d) of **3** in DMF suspension at the low concentration.

12. Fig. S12 The detection limit for NB (a), 1,3-DNB (b), 4-NT (c) and 2,4-DNT (d) of **3** in DMF.

13. Fig. S13 Optical images of test papers with different NACs under 365nm UV light.

14. Table S1 Selected bond lengths (Å) for 1; Table S2 Selected angles (°) for 1.

15. Table S3 Selected bond lengths (Å) for 2; Table S4 Selected angles (°) for 2.

16. Table S5 Selected bond lengths (Å) for 3; Table S6 Selected angles (°) for 3.

Fig. S1 The asymmetric unit of 1.

Fig. S2 The asymmetric unit of 2.

Fig. S3 ABAB-arranged rhombic channels in 2 viewed along *c* axis.

Fig. S4 The asymmetric unit of 3.

Fig. S5 The windmill-like shape in 3.

Fig. S6 The angle between two pyridine groups of bridged DPMF in **1** (a), **2** (b) and **3** (c).

Fig. S7 The PXRD patterns of 1 (a), 2 (b) and 3 (c).

Fig. S8 The PXRD patterns of 3 in different situations.

Fig. S9 The TGA curves of 1-3.

Fig. S10 Luminescence quenching spectra of **3** for NB (a), 1,3-DNB (b), 4-NT (c) and 2,4-DNT (d).

Fig. S11 Stern-Volmer plot for NB (a), 1,3-DNB (b), 4-NT (c) and 2,4-DNT (d) of **3** in DMF suspension at the low concentration.

Fig. S12 The detection limit for NB (a), 1,3-DNB (b), 4-NT (c) and 2,4-DNT (d) of **3** in DMF.

Fig. S13 Optical images of test papers with different NACs under 365nm UV light.

Table S1 Selected bond lengths (Å) for 1

1				
Cu(1)-C(72)	1.910(4)	Cu(1)-N(2)	2.166(3)	
Cu(1)-N(8)#1	1.929(4)	Cu(1)-N(1)#2	2.311(4)	
N(3)-Cu(2)	2.216(4)	N(5)-Cu(2)	2.230(3)	
N(7)-Cu(2)	1.925(4)	Cu(2)-C(73)	1.905(4)	
#1 -x+1,-y+2,-z+1	#2 x,y-1,z #3	x,y+1,z		

 Table S2 Selected angles (°) for 1

1			
C(72)-Cu(1)-N(8)#1	145.44(19)	C(1)-N(1)-Cu(1)#2	119.5(3)
C(72)-Cu(1)-N(2)	105.27(15)	C(5)-N(1)-Cu(1)#2	123.3(3)
N(8)#1-Cu(1)-N(2)	101.46(15)	C(29)-N(3)-Cu(2)	119.6(3)
C(72)-Cu(1)-N(1)#2	106.61(16)	C(25)-N(3)-Cu(2)	123.0(3)
N(8)#1-Cu(1)- N(1)#2	94.92(16)	C(48)-N(5)-Cu(2)	116.5(3)
N(2)-Cu(1)-N(1)#2	89.72(15)	C(52)-N(5)-Cu(2)	125.6(3)
C(73)-N(8)-Cu(1)#3	166.6(4)	C(72)-N(7)-Cu(2)	174.3(4)
C(73)-Cu(2)-N(7)	145.65(18)	C(73)-Cu(2)-N(5)	97.28(16)
C(73)-Cu(2)-N(3)	102.82(16)	N(7)-Cu(2)-N(5)	104.15(15)
N(7)-Cu(2)-N(3)	102.84(15)	N(3)-Cu(2)-N(5)	92.19(15)
N(7)-C(72)-Cu(1)	176.0(4)	N(8)-C(73)-Cu(2)	168.9(4)
C(11)-N(2)-Cu(1)	120.3(3)	C(7)-N(2)-Cu(1)	121.8(3)
#1 -x+1,-y+2,-z+1	#2 x,y-1,z	#3 x,y+1,z	

Table S3 Selected bond lengths (Å) for $\mathbf{2}$

2			
Cu(1)-N(1')	1.846(12)	Cu(1)-N(2)	2.237(7)
Cu(1)-N(3)#1	2.174(6)	Cu(1)-C(1)	2.025(2)
#1 -x+1/2,-y+1/2,-z+1	#2 x,y,-z+1		

Table S4 Selected angles (°) for 2

2			
N(1')-Cu(1)-N(3)#1	102.1(4)	C(7)#2-N(2)-Cu(1)	120.9(4)
N(1')-Cu(1)-N(2)	102.9(4)	C(7)-N(2)-Cu(1)	120.9(4)
N(3)#1-Cu(1)-N(2)	95.2(2)	C(1)-N(3)-Cu(1)#1	122.2(3)
C(1')-N(1')-Cu(1)	164.8(12)	C(1)#2-N(3)- Cu(1)#1	122.2(3)
#1 -x+1/2,-y+1/2,-z+1	#2 x,y,-z+1		

Table S5 Selected bond lengths (Å) for 3

3			
Cu(1)-C(31)	1.885(5)	Cu(1)-N(1)	2.136(4)
Cu(1)-N(3)	1.959(5)	Cu(1)-N(2)#1	2.162(4)
#1 -x-1,y-1/2,-z-1/2	#2 x+1/2,-y+1/2,-z		
#3 -x-1,y+1/2,-z-1/2	#4 x-1/2,-y+1/2,-z		

Table S6 Selected angles (°) for $\mathbf{3}$

3				
C(31)-Cu(1)-N(3)	130.91(17)	C(10)-N(1)-Cu(1)	120.1(3)	
C(31)-Cu(1)-N(1)	116.78(17)	C(11)-N(1)-Cu(1)	122.8(3)	
N(3)-Cu(1)-N(1)	99.91(16)	C(1)-N(2)-Cu(1)#3	120.4(3)	
C(31)-Cu(1)-N(2)#1	107.10(18)	C(3)-N(2)-Cu(1)#3	122.4(3)	
N(3)-Cu(1)-N(2)#1	102.63(17)	C(31)#2-N(3)- Cu(1)	178.6(4)	
N(1)-Cu(1)-N(2)#1	92.14(15)			
#1 -x-1,y-1/2,-z-1/2	#2 x+1/2,-y+1/2,-z			
#3 -x-1,y+1/2,-z-1/2	#4 x-1/2,-y+1/2,-z			