SUPPORTING INFORMATION

An anthracene-pendant ruthenium(II) complex conjugated to a biotin anchor, an essential handle for photo-induced anti-cancer activity

Geângela de Fátima Sousa Oliveira,^a Aryane de Azevedo Pinheiro^b, Luiz Gonzaga do Nascimento Neto^{b,c}, Mayron Alves de Vasconcelos^{b,d}, Edson Holanda Teixeira^b, Ana Claudia Silva Gondim,^a Florencio Sousa Gouveia Jr^a, Luiz Gonzaga de França Lopes,^a Idalina Maria Moreira de Carvalho,^{a*} Eduardo Henrique Silva Sousa^{a*}

a- Group of Bioinorganic, Department of Organic and Inorganic Chemistry, Federal
University of Ceará, Fortaleza, Brazil
b- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal,
Universidade Federal do Ceará, 60441–750, Fortaleza, Ceará, Brazil
c- Departamento do Núcleo Comum, Instituto Federal de Educação, Ciência e Tecnologia do
Ceará, Campus Limoeiro do Norte, 62930-000, Limoeiro do Norte, Ceará, Brazil
d - Faculdade de Ciências Exatas e Naturais, Universidade do Estado do Rio Grande do
Norte, 59625-620, Mossoró, Rio Grande do Norte, Brazil

*corresponding authors: idalina@dqoi.ufc.br, eduardohss@dqoi.ufc.br

Fig. S1. NMR for Ru-biot in $(CD_3)_2$ SO (300 MHz, 303 K). ¹H NMR (A), ¹H-¹H COSY (B), ¹³C NMR (C), ¹H-¹³C HSQC (D, red color for CH₂, and blue for CH and CH₃), ¹H-¹³C HMBC (E).

Fig. S2. Cyclic voltammogram of **Ru-biot** in acetonitrile (0.1 M PTBA, 100 mV s⁻¹), initial anodic scan (blank in dashed blue line).

Fig. S3. Calculated (—) and experimental (—) electronic absorption spectra of **Ru-biot** (right side Y-axis is normalized intensity, left side is the oscillator strength)

Fig. S4. Competition assay of ethidium bromide (1.5 μ mol L⁻¹) with DNA upon titration with Ru-biot (data was fit to a single binding equation, where K_d^{app} was of 2.58 x 10⁶, R² = 0.998).

Fig. S5. Photocleavage of 20 μ M (in base pair) pBR322 DNA in the presence of **Ru-anth** in the dark and after 1 h of irradiation with blue, green and red LEDs. In all experiments, lane 1 contains only linear DNA ladder and lanes 2 and 9 only pBR322 DNA, while lanes 3–8 and 10–15 contained **Ru-anth** in the following concentrations of 0.3, 3.0, 7.0, 15 and 30 μ M. Dark, blue, green and red boxes indicate either the experiment was carried out in the dark or with blue, green or red-light irradiation.

Fig. S6. HaCaT, A549, LS174T and MCF-7 cell viability determined by MTS assay after 48 h of treatment with **Ru-anth** in different doses, without or with blue light exposition for 1h (463 nm, 425 mW cm⁻²).

Fig. S7. Binding to avidin measured by using gel exclusion column. Panel A shows the electronic spectra of the excluded samples after applied onto a micro Biospin 6 column, the collected samples were from a mixture containing only Ru-biot (applied as 100 μ M) (Blue trace), Ru-biot (100 μ M) with avidin (100 μ M) (black trace), and Ru-biot (100 μ M) with avidin (100 μ M) (black trace), and Ru-biot (100 μ M) with avidin (100 μ M) (black trace), and Ru-biot (100 μ M) with avidin (100 μ M) plus biotin (1 mM) (red trace). Panel B shows the resin with the included sample right after the centrifugation, where the color observed indicates the presence of Ru-biot.

Fig. S8. Titration of aviding using **Ru-biot**. Panel A show the luminescence profile during addition of **Ru-biot** into a solution containing avidin (4 μ M), black trace is the emission spectrum of 1.6 μ M of **Ru-biot** added, while the grey traces are further additions until the last one (19 μ M) (blue trace). The red trace is the luminescence spectrum for **Ru-biot** (18 μ M) without avidin. Panel B shows two set of data, one for the titration of **Ru-biot** on a solution containing avidin (circle data) and another without avidin (squares) as monitored by luminescence (at 656 nm). Inset shows a bar plot of the changes in luminescence upon addition of an excess of biotin right after titration of avidin with **Ru-biot**.

Exptl.	Calc.				
λ (nm)	λ	f	Major contribution	Character	
	(nm)				
600	540	0.0013	HOMO→LUMO	$\pi(anth) \rightarrow \pi^*(dppz)$	LLCT
			(99%)		
550	527	0.1207	HOMO → L+1	$\pi(anth) \rightarrow \pi^*(bpy)$	ILCT
			(89%)		
457	430	0.2485	H-4 → L+1 (46%)	$d\pi$ (Ru) $\rightarrow \pi^*$ (bpy-	MLCT
			H-3→L+2 (28%)	anth)	
				$d\pi$ (Ru) $\rightarrow \pi^*$ (bpy-	
				biot)	
437	416	0.0916	H-4 → L+2 (23%)	$d\pi$ (Ru) $\rightarrow \pi^*$ (bpy-	MLCT
			H-3 → L+3 (30%)	biot)	
				$d\pi$ (Ru) $\rightarrow \pi^*(dppz)$	
368	337	0.1493	H-12 → LUMO	$\pi(dppz) \rightarrow \pi^*(dppz)$	IL
			(59%)	$\pi(dppz) \rightarrow \pi^*(dppz)$	
			H-9 → L+4 (21%)		
268	293	0.2147	H-16 → L+2 (28%)	π (biotin) $\rightarrow \pi^*$ (bpy-	IL
			H-15 → L+2 (29%)	biot)	
				π (biotin) $\rightarrow \pi^*$ (bpy-	

 Table S1. Calculated Electronic Absorption Transitions and Assignments for Ru-biot.

				biot)	
256	291	1.0885	H-12 → LUMO	$\pi(bpy) \rightarrow \pi^*(dppz)$	
			(13%)	$\pi(dppz) \rightarrow \pi^*(dppz)$	IL
			H-9 → L+4 (43%)		