Electronic supplementary information (ESI)

A highly active Pd/H-ZSM-5 catalyst in lean methane combustion prepared through sol-gel method and treated by reduction-oxidation

Chao Fan,^{a,b} Li Yang,^{a,b} Li Luo,^{a,b} Zhiwei Wu,*,^a Zhangfeng Qin,*,^a Huaqing Zhu,^a Weibin Fan,^a Jianguo Wang*,^{a,b}

^a State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, PR China

^b University of the Chinese Academy of Sciences, Beijing 100049, PR China

* Corresponding authors. Tel.: +86-351-4046092; Fax: +86-351-4041153. E-mail address: qzhf@sxicc.ac.cn (Z. Qin); wuzhiwei@sxicc.ac.cn (Z. Wu); iccjgw@sxicc.ac.cn (J. Wang)

As the Electronic supplementary information (ESI) of the manuscript "A highly active Pd/H-ZSM-5 catalyst in lean methane combustion prepared through sol-gel method and treated by reduction-oxidation", following materials are provided:

A comparison of various zeolites supported palladium catalysts in their activity for lean methane combustion; TGA profiles of the precursor Pd/H-ZSM-5 catalyst; light-off profiles for methane combustion and Pd 3d XPS spectra of the Pd/H-ZSM-5 catalysts reduced with hydrogen at different temperatures; light-off tests of methane combustion over the Pd/H-ZSM-5-R catalyst at different space velocities; repeated 10 cycle light-off tests of lean methane combustion over the Pd/H-ZSM-5-R catalyst after the 10 cycle repeated light-off tests.

Catalyst	Loading method	Reaction conditions	Pd loading (wt. %)	<i>T</i> _{90%} (°С)	Ref.
Pd/H-ZSM-5	impregnation	$2\% \text{ CH}_4 + 8\% \text{ O}_2;$ GHSV = 48,000 h ⁻¹	1.00	400	[1]
Pd/H-ZSM-5	deposition	1% CH ₄ + 20% O ₂ ; GHSV = 15,000 mL g ⁻¹ h ⁻¹	0.77	311	[2]
Pd-SSZ-13	ion exchange	0.15% CH ₄ + 5% O ₂ ; GHSV = 100,000 h ⁻¹	1.1	362	[3]
Pd-ZSM-5	ibid	ibid	1.30	384	[3]
Pd-H-Mordenite	ion-exchange	1% CH ₄ + 99% Air; GHSV = 100,000 h ⁻¹	0.70	495	[4]
Pd-H-Y	ibid	ibid	1.00	475	[4]
Pd-H-SAPO-5	ibid	ibid	0.96	480	[4]
Pd/H-MCM-41	wet impregnation	$O_2/CH_4 = 4;$ GHSV = 15,000 mL g ⁻¹ h ⁻¹	0.98	454	[5]
Pd/MCM-48	ibid	ibid	1.05	483	[5]
Pd/H-ZSM-5	sol-gel	1% CH ₄ + 99% Air; GHSV = 10,000 mL g ⁻¹ h ⁻¹	0.92	293	this work
		GHSV = 30,000 mL $g^{-1} h^{-1}$		298	
		GHSV = 60,000 mL $g^{-1} h^{-1}$		308	
		GHSV = 100,000 mL $g^{-1} h^{-1}$		324	

Table S1 A comparison of various zeolites supported palladium catalysts in their activity for lean methane combustion

Note: $T_{90\%}$ denotes the temperature for lean methane combustion at which a methane conversion of 90% can be achieved.

Fig. S1 Weight loss and DTG curves for the thermogravimetric analysis of the precursor Pd/H-ZSM-5 catalyst.

Fig. S2 Pd 3d XPS spectra of the Pd/H-ZSM-5 catalysts subjected to reduction with hydrogen at different temperatures: (a) calcined without reduction; (b) 100 °C; (c) 200 °C; (d) 300 °C; (e) 400 °C; (f) 500 °C.

Fig. S3 Effect of reduction temperature (marked in the legend) on the catalytic activity of Pd/H-ZSM-5 in lean methane combustion, represented by the light-off profiles (1.0 vol.% CH_4 , GHSV = 30,000 mL g⁻¹ h⁻¹).

Fig. S4 Light-off tests of lean methane combustion over the Pd/H-ZSM-5-R catalyst at different gas hourly space velocities (GHSV, mL $g^{-1} h^{-1}$): (a) 10,000; (b) 30,000; (c) 60,000; (d) 100,000.

Fig. S5 Repeated 10 cycle light-off tests of lean methane combustion over the Pd/H-ZSM-5-R catalyst (1.0 vol.% CH₄, GHSV = 30,000 mL g⁻¹ h⁻¹). From cycle 1 to cycle 10, the conversion of methane is downshifted by 15% sequentially in the graph.

Fig. S6 Weight loss and DTG curves for the thermogravimetric analysis of the spent Pd/H-ZSM-5-R catalyst after the 10 cycle repeated light-off tests.

References

- C. Shi, L. Yang, X. He and J. Cai, Enhanced activity and stability of Zr-promoted Pd/HZSM-5 catalyst for low-temperature methane combustion, *Chem. Commun.*, 2002, 18, 2006–2007.
- (2) Y. Lou, J. Ma, W. Hu and G. Lu, Low-Temperature Methane Combustion over Pd/H-ZSM-5: Active Pd Sites with Specific Electronic Properties Modulated by Acidic Sites of H-ZSM-5, ACS Catal., 2016, 6, 8127–8139.
- (3) J. B. Lim, D. Jo and S. B. Hong, Palladium-exchanged small-pore zeolites with different cage systems as methane combustion catalysts, *Appl. Catal. B*, 2017, 219, 155–162.
- T. Yusaku, I. Tatsumi, N. Hiroyasu and S. Hideaki, Palladium ion-exchanged SAPO-5 for a low temperature combustion of CH₄, *Stud. Surf. Sci. Catal.*, 1997, **105**, 1647–1654.
- (5) J. A. C. Ruiz, E. C. Oliveira, M. A. Fraga and H. O. Pastore, Performance of Pd supported on mesoporous molecular sieves on methane combustion, *Catal. Commun.*, 2012, 25, 1–6.