Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

Significant promotion effects of Ag oxide to Pd catalyst for ethanol

and methanol oxidation reactions

Ruijie Liu, Si Si, Huashuai Hu, Chongbin Wang, Yuanyuan Feng*

Key laboratory of Life-organic Analysis, College of Chemistry and Chemical Engineering, Qufu

Normal University, Qufu Shandong, 273165, China

*Corresponding author: Prof. Yuan-Yuan Feng

E-mail: yfeng@mail.tsinghua.edu.cn

Samples	Loading of Pd	Loading of Ag	Atomic Pd/Ag ratio
Pd _{0.05} Ag/C	0.43%	8.78%	0.049
Pd _{0.1} Ag/C	0.87%	8.46%	0.104
Pd _{0.5} Ag/C	4.43%	8.74%	0.514
Pd _{1.0} Ag/C	8.76%	8.98%	0.988
Pd/C	8.93%	0	
Ag/C	0	9.02%	

Table. S1 The actual loading and chemical composition of the Pd_mAg/C samples

Catalyst	Electrolyte	Current density (mA mg ⁻¹ Pd)	Reference
	0.5 M KOH + 2.0 M C ₂ H ₅ OH	8688 This work 2475	
Pd _{0.5} Ag/C	0.5 M KOH + 2.0 M CH ₃ OH		
Pt ₁ Ru ₁ /C	1.0 M KOH + 1.0 M C ₂ H ₅ OH	3731	1
Pd ₅₀ Ag ₅₀	1.0 M KOH + 1.0 M C ₂ H ₅ OH	1970	2
Pd-Ag/G	1.0 M KOH + 1.0 M C ₂ H ₅ OH	5200	3
Pd ₁ Ag ₃ -HNs	1.0 M KOH + 1.0 M C ₂ H ₅ OH	1615.9	4
Pd/Ag-BP-30%	1.0 M KOH + 1.0 M C ₂ H ₅ OH	6410.8	5
Pd–Ag/GNs	1.0 M KOH + 1.0 M CH ₃ OH	595	6
Pd-Ag(1:1)/RGO	1.0 M KOH + 1.0 M C ₂ H ₅ OH	1601	7
	1.0 M KOH + 1.0 M CH ₃ OH	630	1

Table. S2 Comparison of the catalytic activity of Pd_{0.5}Ag/C, PtRu/C and the AgPd catalysts previously reported in literature

Figure. S1 TEM images of (A)Pd_{0.05}Ag/C, (B)Pd_{0.1}Ag/C and (C)Pd_{1.0}Ag/C samples. (D-F) show the corresponding size histograms for the metal particles.

Figure. S2 CV curves of $Pd_{0.5}Ag/C$ and Pd/C electrocatalysts in 0.5 M KOH. The potential range was $-1.0 \sim 0.5 V$ (A) and $-1.0 \sim 0.1 V$ (B).

Figure. S3 CO stripping voltammograms of Pd_mAg/C and Pd/C catalysts in 0.5 M KOH, scan rate 50 mV s⁻¹

References:

- 1. Z. Gu, S. Li, Z. Xiong, H. Xu, F. Gao and Y. Du, J. Colloid Interface Sci., 2018, 521, 111-118.
- 2. S. Fu, C. Zhu, D. Du and Y. Lin, ACS Appl. Mater. Interfaces., 2015, 7, 13842-13848.
- 3. A. S. Douk, H. Saravani, M. Farsadrooh and M. Noroozifar, *Ultrason. Sonochem.*, 2019, **58**. 104616.
- D. Bin, B. Yang, K. Zhang, C. Wang, J. Wang, J. Zhong, Y. Feng, J. Guo and Y. Du, *Chem. Eur. J.*, 2016, 22, 16642-16647.
- 5. T. Wu, Y. Ma, Z. Qu, J. Fan, Q. Li, P. Shi, Q. Xu and Y. Min, *ACS Appl. Mater. Interfaces*, 2019, **11**, 5136-5145.
- 6. Z. Li, L. Ye, Y. Wang, S. Xu, F. Lei and S. Lin, *RSC Advances*, 2016, 6, 79533-79541.
- 7. L. Li, M. Chen, G. Huang, N. Yang, L. Zhang, H. Wang, Y. Liu, W. Wang and J. Gao, *J. Power Sources*, 2014, **263**, 13-21.