Electronic Supplementary Information

Facile Solvothermal Synthesis of Pt_{1.2}Co/C Bimetallic Nanocrystals as Efficient Electrocatalysts for Methanol Oxidation and Hydrogen Evolution Reaction

Xilong Wang,[†] Chen Yang,^{†,‡} Lijuan Cao,^{†,‡} Han-Pu Liang^{†,‡,*}

[†]Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China

[‡] Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

**Corresponding author: Han-Pu Liang E-mail addresses: <u>lianghp@qibebt.ac.cn</u>*

Figure S1. Crystallinity and crystallite size of Pt_xCo_y nanoalloys in the as-synthesized Pt_xCo_y/C electrocatalysts.

Sample	Alloy mass loading (wt%)	Pt content (mg/kg)	Co content (mg/kg)	Pt/Co atom ratio
Pt _{2.6} Co/C	19.874	177962.300	20774.100	2.548
Pt _{1.8} Co/C	17.222	147556.000	24661.900	1.780
Pt _{1.2} Co/C	16.527	131759.010	33511.680	1.190
Pt _{1.2} Co/C after stability test for 1000s	13.728	127477.000	9799.200	3.869
PtCo	16.348	158420.200	50567.500	1.055

Table S1. The atom ratio of Pt/Co determined by the inductively coupled plasma atomic emission spectroscopy (ICP-AES)

Figure S2. (a) TEM image and (b) histograms of particle size distribution of as-synthesized Pt/C catalyst sample.

Figure S3. (a) TEM image and (b) histograms of particle size distribution of as-synthesized $Pt_{2.6}Co/C$ catalyst sample.

Figure S4. (a) TEM image and (b) histograms of particle size distribution of as-synthesized $Pt_{1.8}Co/C$ catalyst sample.

Figure S5. (a) TEM image and (b) histograms of particle size distribution of as-synthesized PtCo/C catalyst sample.

Figure S6. XPS survey spectrum of $Pt_{1.2}Co/C$.

Figure S7. (a) Typical TEM image and (b) histograms of particle size distribution of Johnson Matthey (JM) commercial Pt/C catalyst.

Figure S8. Thermal gravimetric (TG) curve of $Pt_{1.2}Co/C$ at a heating rate of $5^{\circ}C/min$.

Figure S9. TEM images (a, b) and histograms of particle size distribution (c) of Pt1.2Co/C catalyst after stability evaluation for 3000s in 0.5 M H2SO4 with 1.0 M methanol.

4

5 6 7 Particle size (nm)

8

9