Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

SUPPORTING INFORMATION

Reusable, few-layered- MoS_2 nanosheets/graphene hybrid on cellulose paper for superior adsorption of methylene blue dye

Arthi Gopalakrishnan¹, Satyam Pratap Singh², Sushmee Badhulika^{1*}

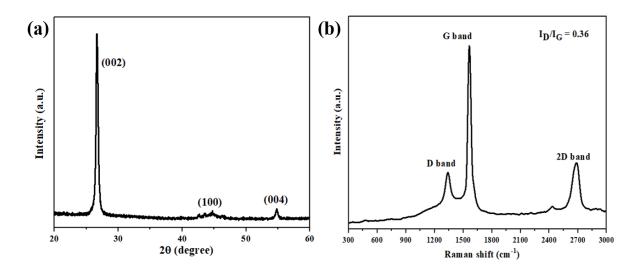


Figure S1: Graphene coated cellulose filter paper (G-CFP) (a) XRD pattern; (b) Raman spectrum

¹ Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Hyderabad 502285, India

² Department of Metallurgical and Materials Engineering, National Institute of Technology, Warangal, 506004, Telangana, India

^{*}Corresponding author: E-mail: sbadh@iith.ac.in; Phone: 040-23018443 Fax- 04023016032

^{1,2} Equal Contribution

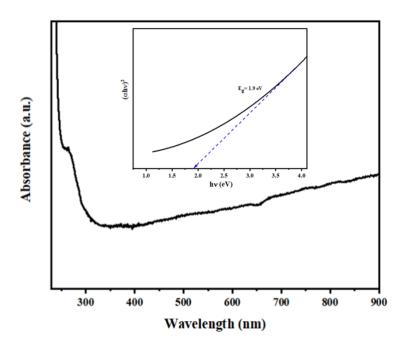


Fig. S2: UV-Vis spectroscopy of MoS₂/Graphene coated cellulose filter paper (M-G-CFP).

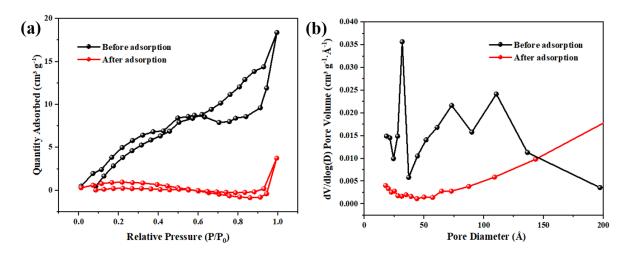


Fig. S3: (a) Nitrogen adsorption-desorption isotherm and (b) Pore size distribution curve of $MoS_2/Graphene$ coated cellulose filter paper (G-CFP) before and after MB adsorption (30mg dosage at pH 7, 298K,100mg/L concentration)..

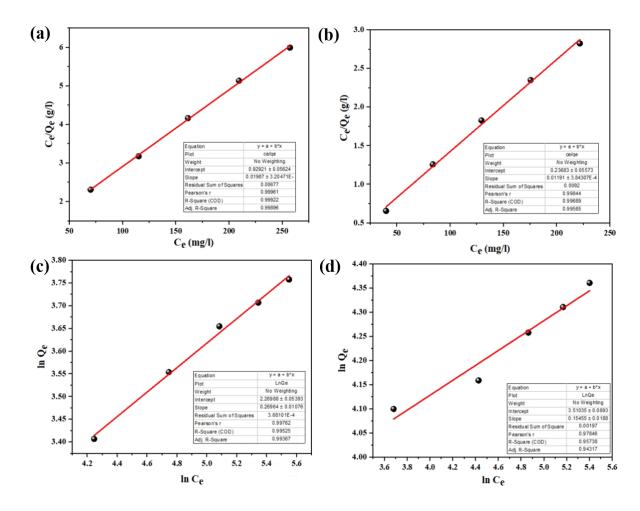


Fig. S4: (a) & (b)-Langmuir isotherm of CFP and G-CFP; (c) & (d)- Freundlich isotherm of CFP and G-CFP (30mg dosage at pH 7, 298K, 100-300mg/L).

Table S1: Adsorption isotherm parameters for MB adsorption on CFP and G-CFP of 30mg at 298K, pH 7.

Isotherms	Parameters	Cellulose filter paper	Graphene-coated cellulose filter paper
Langmuir (Linear)	$Q_0 \text{ (mg/g)}$	50.32	83.96
	b (L/mg)	0.0213	0.0502
	$R_{\rm L}$	0.1348	0.0625
	\mathbb{R}^2	0.999	0.996
	$K_f(mg^{1-1/n}, L^{1/n}, g^{-1})$	9.66	33.44
	1/n	0.2696	0.15455

Freundlich	\mathbb{R}^2	0.995	0.957
(Linear)			