Supporting Information for

Synthesis, crystal structure, and optical properties of fluorinated poly(pyrazole) ligands and in-silico assessment of their affinity for volatile organic compounds

Alessandro Pedrini,¹ Angelo Maspero,^{2,*} Silvia Bracco,¹ Angelina Comotti,¹ Simona Galli,² Luciano Marchiò,³ Luca Nardo,² Andrea Penoni,² Luca Scapinello,² Piero Sozzani,¹ Guglielmo Vesco,² Massimo Mella.²

- University of Milano Bicocca, Dept. of Materials Sciences, Via Cozzi 55, 20137 Milano, Italy
- University of Insubria, Dept. of Science and High Technology, Via Valleggio 11, 22100 Como, Italy
- 3. University of Parma, Dept. of Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 17/A, 43100 Parma, Italy

S.1. Infrared spectroscopy and thermal analysis

Figure S1. ATR-FTIR spectrum of compound H₂BPEFB.

Figure S2. Simultaneous thermal analysis of compound **H**₂**BPEFB**: thermogravimetric analysis, green trace; Differential scanning calorimetry, blue trace.

Figure S3. ATR-FTIR spectrum of compound H₂BPEF₂B.

Figure S4. Simultaneous thermal analysis of compound H₂BPEF₂B: thermogravimetric analysis, green trace; Differential scanning calorimetry, blue trace.

Figure S5. ATR-FTIR spectrum of compound H₂BPEF₄B.

Figure S6. Simultaneous thermal analysis on compound H₂BPEF₄B: thermogravimetric analysis, green trace; Differential scanning calorimetry, blue trace..

Figure S7. ¹H NMR spectrum (400 MHz, DMSO-*d*₆, 298 K) of compound 2a.

Figure S8. ¹³C NMR spectrum (100 MHz, DMSO-*d*₆, 298 K) of compound 2a.

Figure S9. ¹⁹F NMR spectrum (376 MHz, DMSO-*d*₆, 298 K) of compound 2a.

Figure S10. ¹H NMR spectrum (400 MHz, DMSO-*d*₆, 298 K) of compound 2b.

Figure S11. ¹³C NMR spectrum (100 MHz, DMSO-*d*₆, 298 K) of compound 2b.

Figure S12. ¹⁹F NMR spectrum (376 MHz, DMSO-*d*₆, 298 K) of compound 2b.

Figure S13. ¹H NMR spectrum (400 MHz, DMSO-*d*₆, 298 K) of compound 2c.

Figure S14. ¹³C NMR spectrum (100 MHz, DMSO-*d*₆, 298 K) of compound 2c.

Figure S15. ¹⁹F NMR spectrum (376 MHz, DMSO-*d*₆, 298 K) of compound 2c.

Figure S16. ¹H NMR spectrum (400 MHz, DMSO-*d*₆, 298 K) of compound H₂BPEFB.

Figure S17. ¹³C NMR spectrum (100 MHz, DMSO-*d*₆, 298 K) of compound H₂BPEFB.

Figure S18. ¹⁹F NMR spectrum (376 MHz, DMSO-*d*₆, 298 K) of compound H₂BPEFB.

Figure S19. ¹H NMR spectrum (400 MHz, DMSO-*d*₆, 298 K) of compound H₂BPEF₂B.

Figure S20. ¹³C NMR spectrum (100 MHz, DMSO-*d*₆, 298 K) of compound H₂BPEF₂B.

Figure S21. ¹⁹F NMR spectrum (376 MHz, DMSO-*d*₆, 298 K) of compound H₂BPEF₂B.

Figure S22. ¹H NMR spectrum (400 MHz, DMSO-*d*₆, 289 K) of compound H₂BPEF₄B.

Figure S23. ¹³C NMR spectrum (100 MHz, DMSO-*d*₆, 298 K) of compound H₂BPEF₄B.

Figure S24. ¹⁹F NMR spectrum (376 MHz, DMSO-*d*₆, 298 K) of compound H₂BPEF₄B.

S.3. X-ray crystallography

	H ₂ BPEFB	H ₂ BPEF ₂ B	H ₂ BPEF ₄ B
Empirical formula	$C_{16}H_9FN_4$	$C_{16}H_8F_2N_4$	$C_{16}H_6F_4N_4$
Formula weight	276.27	294.26	330.25
Temperature/K	190	190.0	190
Crystal system	monoclinic	monoclinic	monoclinic
Space group	$P2_{1}/c$	P21/c	$P2_{1}/c$
a/Å	15.902(2)	7.913(6)	13.3901(6)
b/Å	5.4778(6)	5.411(3)	6.3395(3)
c/Å	7.315(1)	15.519(11)	7.8929(3)
α/°	90	90	90
β/°	90.515(4)	102.200(13)	93.316(2)
γ / °	90	90	90
Volume/Å ³	637.1(1)	649.5(7)	668.88(5)
Z, Z'	4, 2	2	4, 2
$\rho_{calc} g/cm^3$	1.440	1.505	1.640
µ/mm⁻¹	0.100	0.114	0.141
F(000)	284.0	300.0	332.0
Crystal size/mm ³	$0.05 \times 0.04 \times 0.03$	$0.1\times0.05\times0.02$	$0.05 \times 0.03 \times 0.03$
Radiation	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)	MoKα (λ = 0.71073)
2Θ data collection/°	7.868 to 51.464	5.372 to 51.64	7.114 to 51.478
Refl. Collec./Indep.	14592/ 1213	13572/1247	15225/1269
	$[R_{int} = 0.0841]$	$[R_{int} = 0.0596]$	$[R_{int} = 0.0412]$
Data/restraints/param.	1213/0/100	1247/10/136	1269/0/113
Goodness-of-fit on F^2	1.072	1.072	1.069
R_{1} [I>=2 σ (I)]	0.0845	0.0447	0.0508
$wR_{2}[I >= 2\sigma(I)]$	0.1646	0.1018	0.1386
Peak/hole / e Å ⁻³	0.33/-0.33	0.18/-0.18	0.46/-0.25

Table S1. Crystal data and structure refinement details for H₂BPEFB, H₂BPEF₂B and H₂BPEF₄B.

Figure S25. Molecular structure of **H**₂**BPEFB** with thermal ellipsoids drawn at the 30% probability level. Only one component of the disordered aromatic ring is reported for clarity. Colour code: carbon, grey; hydrogen, white; fluorine, light green; nitrogen, blue.

Figure S26. Molecular structure of H₂BPEF₂B, highlighting the disordered aromatic ring. Thermal ellipsoids drawn at the 30% probability level. Colour code: carbon, grey; hydrogen, white; fluorine, light green; nitrogen, blue.

Figure S27. Molecular structure of H₂BPEF₄B, with thermal ellipsoids drawn at the 30% probability level. Colour code: carbon, grey; hydrogen, white; fluorine, light green; nitrogen, blue.

Figure S28. Portion of the crystal structure of H₂BPEF₂B viewed, in perspective, along the crystallographic directions (a) [001] and (b) [010]. The carbon atoms of two consecutive 2-D layers are highlighted in yellow and gray, respectively. Non-bonding interactions are represented with dashed lines. Colour code: hydrogen, white; fluorine, green; nitrogen, blue.

Figure S29. Portion of the crystal structure of **H**₂**BPEF**₄**B** viewed, in perspective, along the crystallographic directions (a) [011] and (b) [001]. The carbon atoms of two consecutive 2-D layers are highlighted in yellow and gray, respectively. Non-bonding interactions are represented with dashed lines. Colour code: hydrogen, white; fluorine, green; nitrogen, blue.

S.4. Electronic state transition spectroscopy

Figure S30. Solid-state absorption (blue) and fluorescence (red) spectral line-shapes of a) H₂BPEFB, b) H₂BPEF₂B, and c) H₂BPEF₄B.

Figure S31. Absorption spectra of compounds **H**₂**BPEB** (blue), **H**₂**BPEFB** (red), **H**₂**BPEF**₂**B** (cyan), and **H**₂**BPEF**₄**B** (magenta) in: a) toluene, b) chloroform, c) tetrahydrofuran, d) dichloromethane, e) ethyl acetate, f) ethanol, and g) dimethylsulfoxyde.

Figure S32. Fluorescence emission spectra of compounds H₂BPEB (blue), H₂BPEFB (red), H₂BPEF₂B (cyan), and H₂BPEF₄B (magenta) in: a) toluene, b) chloroform, c) tetrahydrofuran, d) dichloromethane, e) ethyl acetate, f) acetone, g) ethanol, and h) dimethylsulfoxyde.

S.5. Dielectric properties and hydrophobicity

Figure S33. Powder X-ray diffraction patterns of a) H₂BPEFB, b) H₂BPEF₂B and c) H₂BPEF₄B as synthesized (red trace) and after pellettization (blue trace).

Figure S34. From dark red to light orange: first-to-fifth measurement of the dielectric constant as a function of the AC frequency for a) **H**₂**BPEFB** and b) **H**₂**BPEF**₂**B**, after pellet exposure to a water vapour saturated environment.