Electronic Supporting Material

Development of a fluorescent lateral flow strips based on electrospinning molecular imprinting membrane for detection of triazophos residues in tap water

Yahui He^{1,3*}, Sihui Hong², Miao Wang², Jing Wang¹, A. M. Abd El-Aty^{3,4}, Jing Wang² *, Ahmet Hacimuftuoglu⁴, Majid Khan¹, Yongxin She^{2*}

¹China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology &Business University, 100048, P.R. China

² Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China

³Beijing Advanced Innovation Center for Food Nutrition and Human Health, 100048,

P.R. China

⁴ Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211-Giza, Egypt

⁵ Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240-Erzurum, Turkey

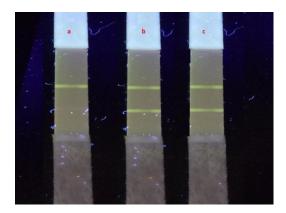


Fig. S1. Images of comparison of molecularly imprinted T-Line prepared via direct dipping and electrospinning methods. a) T-line painted directly with 0.5 mg mL⁻¹ MIP particles, b) T-line prepared by electrospinning 0.5 mg mL⁻¹ MIP, and c) T-line painted directly with 50 mg mL⁻¹ MIP.

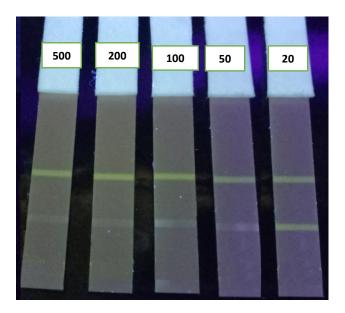


Fig. S2. Images of a series concentrations (20, 50, 100, 200, and 500 μ g L⁻¹) of triazophos standard solution spiked into tap water for test strips.

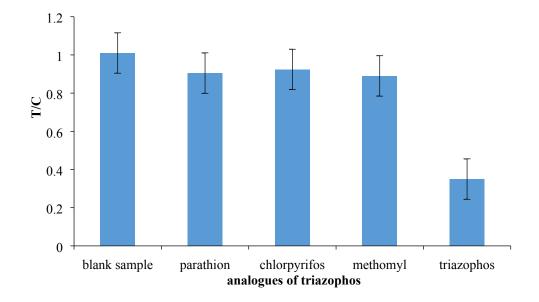


Fig. S3. The T/C values for triazophos and its analogues.