COMMUNICATION

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Supporting Information

One-pot synthesis of Au-Fe₂O₃@SiO₂ core-shell nanoreactors for CO oxidation

Hongbo Yu,^{*}^a Zhengtong Guo, Chunzheng Wu,^a Shujian Wang,^a Bin Li,^a Xuedong Yan,^b Bo Yan,^a and Hongfeng Yin^{*}^a

^{a.} Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. 11219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R.

^{b.} E-mail: yinhf@nimte.ac.cn; yuhongbo@nimte.ac.cn

^c Ningbo Polytechnic388 East Lushan Road, Ningbo, Zhejiang, 315800

COMMUNICATION

Experimental Section

Materials. Tetraethyl silicate (TEOS), Polyoxyethylene (10) cetyl ether (Brij[®] C10), FeCl₃· GH_2O , HAuCl₄· xH_2O , were obtained from Aladdin Reagent Co., Ltd.; anhydrous ethanol, ammonium hydroxide (NH₃·H₂O, 15 M), and cyclohexane were purchased from Sinopharm Chemical Reagents Co., Ltd.; All reagents were used directly without further purification. Deionized water was used throughout. The gas mixture (carbon monoxide, 1%; O₂, 20%; and the remainder, N₂) were purchased from Shanghai Weichuang Standard Reference Gas Analytical Technology Company.

Characterization. XRD patterns were collected on a Bruker AXS D8 Advance diffractometer using Cu K α radiation. Diffraction patterns were measured in the 2 θ range from 10° to 90°. XRD samples were prepared by pressuring powders onto a glass plate. TEM images were obtained by a JEOL 2100 transmission electron microscope operated at 200 kV. The high angle annular dark field scanning transition electron microscopy (HAADF-STEM) image with EDS phase mapping of Au-Fe₂O₃@SiO₂ nanoparticles were obtained using ThermoFisher Talos F200X. For TEM measurements, catalyst samples were dispersed in ethanol solution and were dropped onto a carbon-coated copper grid followed by solvent evaporation in air at room temperatures. BET surface area, pore size distribution and the adsorption/desorption isotherms of the nanocatalysts were measured by N₂ adsorption at 77 K, using a Micromeritics ASAP-2020 M automatic specific surface area and porous physical adsorption analyzer. UV-Vis absorption spectra were recorded on a Lambda 950 spectrophotometer at 300~900 nm. The nanoparticles are dispersed in a quartz cuvette.

Catalyst Preparation.

Preparation of Au-Fe₂O₃@SiO₂ core-shell nanoparticles. In a typical synthetic process, 4.25 g Brij[®] C10 was dissolved in 40 mL of cyclohexane at 50 °C. Then, 400 μ L of an aqueous solution containing 0.03mmol HAuCl₄ and 0.03mmol FeCl₃ was added dropwise with stirring. After 20 min, 0.8 mL of NH₃·H₂O (25%) and 1 mL of TEOS were added to the solution in sequence. The reaction mixture was kept stirring for 2.5h to obtain Precursor@SiO₂ multinuclear/shell nanospheres. The product was centrifuged, washed with ethanol and dried at 100°C for 12h, and calcined at 350 °C for 2h to obtain Au-Fe₂O₃@SiO₂ nanocomposite catalyst.

In the process of synthesizing Au-Fe₂O₃@SiO₂ nanocomposite catalyst, the addition amount of HAuCl₄ was 0.03 mmol, and the addition amount of FeCl₃ was 0 mmol, 0.01 mmol, 0.03 mmol, 0.06 mmol, 0.09 mmol, respectively, and the resulting products were labeled as Au3Fe0, Au3Fe1, Au3Fe3, Au3Fe6, Au3Fe9. And the sample without HAuCl₄ addition was labeled as Au0Fe3. The Au-Fe₂O₃@SiO₂ (Au3Fe6)nanocomposite catalysts were subjected to thermal pretreatment at 450 and 550 °C, respectively.

Catalyst Activity Measurements. The CO catalytic oxidation reaction was carried out in a fix-bed quartz reactor (U-type tube, 6 mm inner diameter). 50 mg of Au-Fe₂O₃@SiO₂ nanocatalysts were charged into the U-type reactor, followed the system was pretreated at 100 $^{\circ}$ C in a Ar flow for 0.5 h and cooled to the room temperature under Ar. And then the gas mixture (carbon monoxide, 1%; O₂, 20%; and the remainder, N₂) were allowed to flow through the catalysts at a total flow rate of 30 mL/min at different temperatures for 3 h. The concentrations of CO and CO₂ were analyzed by FGA-4100 gas analyzer produced by Foshan Analyser Co., Ltd.

Figure S1. Particle size histograms: a)-c) Au-Fe₂O₃@SiO₂ nanoparticles(Au1Fe3) synthesized at different TEOS concentrations of 0.1M, 0.2 M and 0.3 M, respectively; d)-h) Au-Fe₂O₃@SiO₂ nanoparticles with different Au/Fe ratios of Au3Fe0, Au3Fe1, Au3Fe3, Au3Fe6 and Au3Fe9, respectively.

COMMUNICATION

Figure S2. EDS spectra showing: a), Au3Fe1 NPs; b), Au3Fe3 NPs; c), Au3Fe6 NPs; d), Au3Fe9 NPs.

Figure S3. N₂ sorption/isotherms and pore size distribution of Au-Fe₂O₃@SiO₂ NPs.

Figure S4. XPS spectra showing (a) Au-Fe₂O₃@SiO₂(Au3Fe6) nanocatalyst calcined in air at 450 °C and (b) Au-Fe₂O₃/SiO₂ supported catalyst (The loadings of Au and Fe are 0.05 and 0.088, respectively.) calcined in air at 450 °C.

Preparation of Au-Fe₂O₃/SiO₂ catalysts. The Au-Fe₂O₃/SiO₂ catalysts were prepared by an incipient-wetness impregnation method. A certain amount of HAuCl₄·xH₂O and FeCl₃·6H₂O(The molar ratio of Au and Fe is 1/3) were dissolved in deionized water, and a calculated amount of silica was added into the above aqueous solutions. After 4 hours, the obtained samples were further dried at 120 °C overnight, and followed by calcination in air at 450 °C for 2 h to obtain Au-Fe₂O₃/SiO₂ catalysts.

Figure S5. The effect of reaction time on CO oxidation over Au3Fe6 nanaocatalyst at 270 °C. Reaction conditions: Au-Fe₂O₃@SiO₂ catalysts-50 mg; Gas flow rate-30 mL/min; CO-1% (v/v), O₂-20% (v/v), and N₂-79% (v/v).