Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Information

Iron doping boosts reactivity and stability of $\gamma\text{-}Al_2O_3$ nanosheet

supported cobalt catalyst for propane dehydrogenation

Chang-Wu Zhang, Jing Wen, Lei Wang, Xin-Ge Wang, and Lei Shi*

School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China

*Corresponding authors.

E-mail address: <u>dlutshilei@dlut.edu.cn</u> (L. Shi).

Fig. S1 ²⁷Al MAS NMR spectra and their deconvolution results of the 5Co1.6Fe/Al₂O₃ and 5Co1.6Fe/Al₂O₃-com catalysts.

Fig. S2 (a) Nitrogen sorption isotherms of the Al_2O_3 -com and $5Co1.6Fe/Al_2O_3$ -com catalysts. The isotherm of the Al_2O_3 -com is offset vertically by 100 cm³ g⁻¹, STP. (b) The pore size distribution of the Al_2O_3 -com and $5Co1.6Fe/Al_2O_3$ -com catalysts.

Fig. S3 XPS spectra in the Fe 2p region of the $5Co/Al_2O_3$, $5Co1.6Fe/Al_2O_3$ and $1.6Fe/Al_2O_3$ catalysts.

Fig. S4 Propane conversion and propylene selectivity over the $5Fe/Al_2O_3$ catalyst as a function of reaction time. Reaction conditions: temperature, $590^{\circ}C$; catalyst weight, 0.1 g; gas feed, 16.2 kPa C_3H_8 , and N_2 balance; flow rate, 25 mL min⁻¹.

Fig. S5 (a,b) HR-TEM images of the 5Co1.6Fe/Al₂O₃ catalyst after 14-hour test in propane dehydrogenation reaction.

Fig. S6 (a) HAADF-STEM image of the $5Co1.6Fe/Al_2O_3$ catalyst after 14-hour test in propane dehydrogenation, and (b) EDX elemental mapping analysis of Al-K, O-K, Co-L, and Fe-L edges.

Fig. S7 XRD patterns of series of cobalt-based catalysts after the propane dehydrogenation test.

Fig. S8 TGA and DSC curves of the $5Co/Al_2O_3$ catalyst after 3.5-hour test in propane dehydrogenation.

Fig. S9 TGA and DSC curves of the 5Co1.6Fe/Al₂O₃ catalyst after 14-hour test in propane dehydrogenation.

Fig. S10 TGA and DSC curves of the 5Co1.6Fe/Al₂O₃-com catalyst after 12-hour test in propane dehydrogenation.

Catalysts	Conversion (%)	Select	Selectivity (%)				
		C_3H_6	C_2H_6	C_2H_4	CH_4		
Al ₂ O ₃	0.8	72.8	18.1	0.2	8.9		
$1Co/Al_2O_3$	5.7	93.6	0.1	3.9	2.4		
$3Co/Al_2O_3$	14.5	96.8	0.1	1.7	1.4		
$5Co/Al_2O_3$	15.8	97.0	0.2	1.5	1.3		
$10Co/Al_2O_3$	11.6	94	0.4	2.2	3.4		

Table S1. The catalytic properties of γ -Al₂O₃ nanosheet supported cobalt catalysts in propane dehydrogenation.^a

^a Reaction condition: temperature, 590°C; catalyst weight, 0.1 g; gas feed, 16.2 kPa C_3H_8 and N_2 balance; flow rate, 25 mL min⁻¹; reaction time, 2h.

Table S2. The catalytic properties of series of cobalt-based catalysts in propane dehydrogenation.^a

Catalysts	Conversion (9/)	Selectivity (%)				
Catalysts		C_3H_6	C_2H_6	C_2H_4	CH_4	
5Co/Al ₂ O ₃	15.8	97.0	0.2	1.5	1.3	
$5Co1.6Fe/Al_2O_3$	22.4	97.3	0.2	1.2	1.3	
$5Co1.6Cu/Al_2O_3$	10.4	95.4	0.1	2.8	1.7	
5Co1.6Mn/Al ₂ O ₃	13.4	96.9	0.1	1.6	1.4	
5Co/Al ₂ O ₃ -com	16.2	96.9	0.1	1.7	1.3	
5Co1.6Fe/Al ₂ O ₃ -com	16.5	96.2	0.4	1.7	1.7	

^a Reaction condition: temperature, 590°C; catalyst weight, 0.1 g; gas feed, 16.2 kPa C_3H_8 , and N_2 balance; flow rate, 25 mL min⁻¹; reaction time, 2h.

Catalysts	Temp	Gas feed	GHSV	WHSV	Time	Conversion	Selectivity	Specific activity ^a	Dof	
	(°C)	(in volume ratio)	$(mL \cdot g_{cat}^{-1} \cdot h^{-1})$	$(g \cdot g_{cat}^{-1} \cdot h^{-1})$	(h)	(%)	(%)	(×10 ⁻³ mol _{C3H6} ·mol ⁻¹ ·s ⁻¹)	Rel.	
5 wt%Co1.6 wt%Fe/Al ₂ O ₃	590	C ₃ H ₈ /N ₂ =4/21	2400	4.7	2	22.4	97.3	7.7	This	
									work	
5.7wt%Co/Al ₂ O ₃ -re-oxidizd	600	$C_{3}H_{8}/N_{2}$ =15.4/30.8	465	0.9	2	26.0	93.0	2.5	[1]	
20wt%Co5wt%S/Al ₂ O ₃	560	C ₃ H ₈ =12	360	0.7	6	21.0	76.0	0.2	[2]	
11.1wt%CoAl ₂ O ₃	600	C ₃ H ₈ /N ₂ =1/19	300	0.6	5	15.0	80.0	0.6	[3]	
5wt%Co/Al ₂ O ₃	560	C ₃ H ₈ =12	240	0.5	6	28.0	90.0	0.9	[4]	
5wt%Co/Al ₂ O ₃ -NS	600	C ₃ H ₈ /He=2.7/27.3	550	1.1	5	17.6	81.0	2.0	[5]	
7wt%Co-Al ₂ O ₃ -HT	590	$C_{3}H_{8}/H_{2}/N_{2}=$	1600	2.9	5	21.1	97.1	3.7	[6]	
		4/3.6/12.8							[0]	
20wt%Fe-P/Al ₂ O ₃	600	C ₃ H ₈ /N ₂ = 1/20	150	0.29	5.5	15.0	80	0.06	[7]	
5wt%Fe ^{II} /SiO ₂	650	C ₃ H ₈ /Ar= 3/97	100	0.2	18	6.3	99	0.1	[8]	
12wt%VO _x /Al ₂ O ₃	600	C ₃ H ₈ /H ₂ = 1/1	1530	3.0		33.0	94.0	2.5	[9]	
$1wt\%Sn-Cr_2O_3/Al_2O_3$	610	C ₃ H ₈ /N ₂ = 1/4	260	0.5		50.0	90.0	7.3	[10]	
$7wt\%Cr_2O_3/Al_2O_3$	580	C ₃ H ₈ /H ₂ /N ₂ = 7/7/11	2800	5.5	1	15.5	98.0	4.0	[11]	

Table S3. The summary of catalytic performances in propane dehydrogenation over some typical catalysts reported in literatures.

^a Specific activity is defined as the moles of C_3H_6 formation per mole of metal atom per second.

References

[1] X. Li, P. Wang, H. Wang and C. Li, *Appl. Surf. Sci.*, 2018, **441**, 688–693.

[2] Y. Sun, Y. Gao, Y. Wu, H. Shan, G. Wang and C. Li, *Catal. Commun.*,2015, 60, 42–45.

[3] T. Mesoporous, C. S. Catalyst, N. Propane, A. B. Hu, W. Kim, T. P. Sulmonetti, L. Michele, S. Tan, J. So, Y. Liu, R. Dixit, S. Nair, C. W. Jones, B. Hu, W. Kim, T. P. Sulmonetti, M. L. Sarazen, S. Tan and J. So, *ChemCatChem.*, 2017, **17**, 3330-3337. doi:10.1002/cctc.201700647.

[4] Y. Sun, Y. Wu, H. Shan and C. Li, *Catal. Letters*, 2015, **145**, 1413–1419.

[5] N. Dewangan, J. Ashok, M. Sethia, S. Das, S. Pati, H. Kus and S. Kawi, *ChemCatChem.*, 2019, **11**, 4923–4934.

[6] Y. Dai, J. Gu, S. Tian, Y. Wu, J. Chen, F. Li, Y. Du, L. Peng, W. Ding and Y. Yang, *J. Catal.*, 2020, **381**, 482–492.

[7] S. Tan, B. Hu, W-G. Kim, S. H. Pang, J. S. Moore, Y. Liu, R.a S. Dixit, J. G. Pendergast,
D. S. Sholl, S. Nair and C. W. Jones, *ACS Catal.* 2016, *6*, 5673–5683.

[8] B. Hu, N. M. Schweitzer, G. Zhang, S. J. Kraft, D. J. Childers, M. P. Lanci, J. T. Miller, and A. S. Hock, *ACS Catal*. 2015, **5**, 3494–3503.

- [9] G. Liu, Z.-J. Zhao, T. Wu, L. Zeng and J. Gong, ACS Catal. 2016, 6, 5207-5214.
- [10] F. Cabrera, D. Ardissone and O. F. Gorriz, Catal. Today., 2008, 133, 800-804.

[11] D. Shee and A. Sayari, Appl. Catal. A-Gen., 2010, 389, 155-164.