Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting information

Multicomponent synthesis of diphenyl 1,3-thiazolebarbituric acid hybrids and their fluorescence property studies

Alok Mahata,^a Prabhas Bhaumick,^a Anoop Kumar Panday,^a Rahul Yadav,^b Tasneem Parvin^{b*} and Lokman H. Choudhury^{a*}

^aDepartment of Chemistry, Indian Institute of Technology Patna, Bihta, Patna-801106

^bDepartment of Chemistry, National Institute of Technology Patna, Ashok Rajpath, Patna-800 005

Table of contents:

1.	Copies of ¹ H and ¹³ C NMR spectra of compounds	
2.	Crystal structure description of 4c and 8a	\$33-\$34
3.	Quantum yield calcuataion:	\$35-\$35
4.	Uv-visible and fluorescence spectra of compounds	S36-S41

Copies of ¹H and ¹³C NMR spectra of compounds ¹H and ¹³C NMR spectra of 4a

¹H and ¹³C NMR spectra of 4d

¹H and ¹³C NMR spectra of 4e

¹H and ¹³C NMR spectra of 4f

¹H and ¹³C NMR spectra of 4g

¹H and ¹³C NMR spectra of 4h

¹H and ¹³C NMR spectra of 4i

¹H and ¹³C NMR spectra of 4j

¹H and ¹³C NMR spectra of 4k

¹H and ¹³C NMR spectra of 4l

¹H and ¹³C NMR spectra of 4m

¹H and ¹³C NMR spectra of 4n

¹H and ¹³C NMR spectra of 40

¹H and ¹³C NMR spectra of 4p

¹H and ¹³C NMR spectra of 4q

¹H and ¹³C NMR spectra of 4r

¹H and ¹³C NMR spectra of 4s

¹H and ¹³C NMR spectra of 4t

¹H and ¹³C NMR spectra of 4u

¹H and ¹³C NMR spectra of 4v

¹H and ¹³C NMR spectra of 4w

¹H and ¹³C NMR spectra of 4x

¹H and ¹³C NMR spectra of 4y

¹H and ¹³C NMR spectra of 4z

¹H and ¹³C NMR spectra of 4aa

¹H and ¹³C NMR spectra of 4bb

¹H and ¹³C NMR spectra of 8a

¹H and ¹³C NMR spectra of 9a

Crystal data of compound 4c:

Figure S1. X-ray structure of 3c with 50 % ellipsoidal probability (CCDC 1979332)

Identification code	MM_a	
Chemical formula	C21 H16 Cl N3O3S	
Formula weight	425.88 g/mol	
Temperature	298 K	
Wavelength	0.71073 Å	
Space group	P 21/n	
Unit cell dimensions	a = 10.525(1) Å	$\alpha = 90^{\circ}$
	b = 8.9515(10) Å	$\beta = 101.225(3)^{\circ}$
	c = 20.771(2) Å	$\gamma = 90$ °
Volume	1919.5(3) Å ³	
Z	4	
Density (calculated)	1.474 g/cm^3	
F(000)	880.0	

Crystal data of compound 8a:

Figure S2: X-ray structure of 8a with 50 % ellipsoidal probability (CCDC 1951758)

Table S2. Sample and crystal	data for 8a	
Identification code	oxazole_1	
Chemical formula	$C_{21}H_{19}N_3O_5$	
Formula weight	393.39 g/mol	
Temperature	298(2) K	
Wavelength	0.71073 Å	
Crystal size	0.300 x 0.300 x 0.300 mm	
Crystal system	triclinic	
Space group	P -1	
Unit cell dimensions	a = 8.2908(7) Å	$\alpha = 64.421(2)^{\circ}$
	b = 11.5745(10) Å	$\beta = 78.679(3)^{\circ}$
	c = 11.6052(11) Å	$\gamma = 78.392(2)^{\circ}$
Volume	976.39(15) Å ³	
Z	2	
Density (calculated)	1.338 g/cm ³	
Absorption coefficient	0.097 mm ⁻¹	
F(000)	412	

Quantum yield calcuataion:

Quantum yields were calculated with respect to quinine sulphate dihydrate in 0.1M H $_2$ SO $_4$ as fluorescence standard.

 \emptyset = Quantum yield; λ abs max = Absorbance maxima

 λ em max = Fluorescence emission maxima

Fluorescence quantum yields (Ø) were calculated according to the equation.³⁹

 \emptyset = \emptyset std x [I_s / I std] x [A std / A s] x [η s / η std] ²

Where, Ø is the fluorescence quantum yield of the sample, Ø std is the quantum yield of the quinine sulphate dehydrate (Øf = 0.55, quinine sulphate dihydrate in 0.1 N H₂SO₄), I_s and I_{std} are the integrated emission intensities of the sample and the standard, respectively, A_s and A_{std} are the absorbance of the sample and the standard at the excitation wavelength, respectively, and η_{s} and η_{std} are the refractive index of the medium taken.

References:

39. G. A. Crosby and J. N. Demas, J. Phys. Chem., 1971, 75, 991.

UV and fluorescence spectra of 4a-4s:

