ESI for New Journal of Chemistry

Electronic Supporting Information

Synthesis of 2-aroylfuro[3,2-*c*]quinolines from quinolone-based chalcones and evaluation of their antioxidant and anticholinesterase activities

João P. S. Ferreira,^a Susana M. Cardoso,^a Filipe A. Almeida Paz,^b Artur M. S. Silva,^a Vera L. M. Silva*^a

^aLAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.

^bCICECO, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.

Table of Contents

1.	NMR spectra	S3
Fig	gure S1. ¹ H NMR spectrum of compound 2a (300.13 MHz, CDCl ₃)	S3
Fig	gure S2. Expansion of ¹ H NMR spectrum of compound 2a (300.13 MHz, CDCl ₃)	S3
Fig	gure S3. ¹³ C NMR spectrum of compound 2a (75.47 MHz, CDCl ₃)	S4
Fig	gure S4. ¹ H NMR spectrum of compound 2b (300.13 MHz, CDCl ₃)	S4
Fig	gure S5. Expansion of ¹ H NMR spectrum of compound 2b (300.13 MHz, CDCl ₃)	S5
Fig	gure S6. ¹³ C NMR spectrum of compound 2b (75.47 MHz, CDCl ₃)	S5
Fig	gure S7. ¹ H NMR spectrum of compound 2c (300.13 MHz, CDCl ₃)	S6
Fig	gure S8. Expansion of ¹ H NMR spectrum of compound 2c (300.13 MHz, CDCl ₃)	S6
Fig	gure S9. ¹³ C NMR spectrum of compound 2c (75.47 MHz, CDCl ₃)	S7
Fig	gure S10. ¹ H NMR spectrum of compound 2d (300.13 MHz, CDCl ₃)	S7
Fig	gure S11. Expansion of ¹ H NMR spectrum of compound 2d (300.13 MHz, CDCl ₃)	S 8
Fig	gure S12. ¹³ C NMR spectrum of compound 2d (75.47 MHz, CDCl ₃)	S 8
Fig	gure S13. ¹ H NMR spectrum of compound 2e (300.13 MHz, CDCl ₃)	S9
Fig	gure S14. Expansion of ¹ H NMR spectrum of compound 2e (300.13 MHz, CDCl ₃)	S9
Fig	gure S15. ¹³ C NMR spectrum of compound 2e (75.47 MHz, CDCl ₃)	S10
Fig	gure S16. ¹ H NMR spectrum of compound 3 (300.13 MHz, $CDCl_3$)	S10
Fig	gure S17. Expansion of ¹ H NMR spectrum of compound 3 (300.13 MHz, CDCl ₃)	S11
Fig	Figure S18. ¹³ C NMR spectrum of compound 3 (75.47 MHz, CDCl ₃)	
2.	Single-Crystal X-Ray Diffraction Studies	S12
3.	References	S13

1. NMR spectra

Figure S1. ¹H NMR spectrum of compound 2a (300.13 MHz, CDCl₃)

Figure S2. Expansion of ¹H NMR spectrum of compound 2a (300.13 MHz, CDCl₃)

Figure S4. ¹H NMR spectrum of compound 2b (300.13 MHz, CDCl₃)

Figure S5. Expansion of ¹H NMR spectrum of compound **2b** (300.13 MHz, CDCl₃)

Figure S6. ¹³C NMR spectrum of compound 2b (75.47 MHz, CDCl₃)

Figure S8. Expansion of ¹H NMR spectrum of compound 2c (300.13 MHz, CDCl₃)

Figure S10. ¹H NMR spectrum of compound 2d (300.13 MHz, CDCl₃)

Figure S11. Expansion of ¹H NMR spectrum of compound 2d (300.13 MHz, CDCl₃)

Figure S12. ¹³C NMR spectrum of compound 2d (75.47 MHz, CDCl₃)

Figure S14. Expansion of ¹H NMR spectrum of compound 2e (300.13 MHz, CDCl₃)

Figure S16. ¹H NMR spectrum of compound 3 (300.13 MHz, CDCl₃)

^{*} Peaks at δ 30.9 ppm and 207.0 ppm are due to the presence of acetone since the spectrum was acquired before drying the compound in the vacuum pump.

Figure S18. ¹³C NMR spectrum of compound 3 (75.47 MHz, CDCl₃)[†]

[†] The peak at δ 41.0 ppm was not assigned to the compound since no correlations were observed for this signal in the 2D HSQC or HMBC spectra.

2. Single-Crystal X-Ray Diffraction Studies

Experimental Section

Single crystals of compound 12a-bromo-6b,12a-dihydro-12*H*-chromeno[2',3':4,5]furo [3,2-*c*]quinolin-12-one (**3**) were manually harvested from an NMR tube and immersed in highly viscous FOMBLIN Y perfluoropolyether vacuum oil (LVAC 140/13, Sigma-Aldrich) to avoid degradation caused by the evaporation of the solvent.¹ Crystals were mounted on MiTeGen MicroLoops, typically with the help of a Stemi 2000 stereomicroscope equipped with Carl Zeiss lenses. X-ray diffraction data were collected at 150(2) K on a Bruker D8 QUEST equipped with Mo K α sealed tube ($\lambda = 0.71073$ Å), a multilayer TRIUMPH X-ray mirror, a PHOTON 100 CMOS detector, and an Oxford Instruments Cryostrem 700+ Series low temperature device. Diffraction images were processed using the software package SAINT+,² and data were corrected for absorption by the multiscan semi-empirical method implemented in SADABS 2016/2.³

The structure was solved using the algorithm implemented in SHELXT-2014/5,⁴ which allowed the immediate location of almost all of the heaviest atoms composing the molecular unit. The remaining missing and misplaced non-hydrogen atoms were located from difference Fourier maps calculated from successive full-matrix least-squares refinement cycles on F^2 using the latest SHELXL from the 2018/3 release.⁵ All structural refinements were performed using the graphical interface ShelXle.⁶

Hydrogen atoms bound to carbon were placed at their idealized positions using appropriate *HFIX* instructions in SHELXL: 43 (aromatic carbon atoms) and 13 (tertiary carbon atoms). These hydrogen atoms were included in subsequent refinement cycles with isotropic thermal displacements parameters (U_{iso}) fixed at $1.2 \times U_{eq}$ of the parent carbon atoms.

The last difference Fourier map synthesis showed the highest peak (0.518 eÅ⁻³) and the deepest hole (-0.348 eÅ⁻³) located at 1.01 and 0.84 Å from Br1, respectively. Structural drawings have been created using the software package Crystal Impact Diamond.⁷

Crystal data for **3**: C₁₈H₁₀BrNO₃, M = 368.18, monoclinic, space group $P2_1/c$, Z = 4, a = 15.6773(18) Å, b = 6.7908(8) Å, c = 15.3495(19) Å, $\beta = 118.405(4)^\circ$, V = 1437.4(3)Å³, μ (Mo-K α) = 2.875 mm⁻¹, $D_c = 1.701$ g cm⁻³, colourless plate with crystal size of $0.21 \times 0.07 \times 0.02$ mm³. Of a total of 25437 reflections collected, 2616 were independent ($R_{int} = 0.0464$). Final R1 = 0.0251 [$I > 2\sigma(I)$] and wR2 = 0.0562 (all data). Data completeness to theta = 25.24°, 99.7%. CCDC 1962713.

3. References

- 1. T. Kottke and D. Stalke, J. Appl. Crystallogr., 1993, 26, 615-619.
- 2. SAINT+, *Data Integration Engine v.* 8.37*a*[©], 1997-2015, Bruker AXS, Madison, Wisconsin, USA.
- 3. L. Krause, R. Herbst-Irmer, G. M. Sheldrick and D. Stalke, *J. Appl. Crystallogr.*, 2015, **48**, 3-10.
- 4. G. M. Sheldrick, *Acta Cryst. A*, 2015, **71**, 3-8.
- 5. G. M. Sheldrick, *Acta Cryst. C*, 2015, **71**, 3-8.
- 6. C. B. Hübschle, G. M. Sheldrick and B. Dittric, J. Appl. Crystallogr., 2011, 44, 1281-1284.
- 7. K. Brandenburg, *DIAMOND*, Version 3.2f. Crystal Impact GbR, Bonn, Germany, 1997-2010.