Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

A new strategy for designing Zr-based metal organic frameworks to high

efficient photocatalytic reduction of Cr(VI) under Visible light

Haimei Xie^{1†}, Duomou Ma^{1†}, Wanyan Liu^{2,3†}, Qian Chen¹, Yong Zhang^{2,3}, Jian Huang^{2,3}, Hua

Zhang^{2,3}, Zhen Jin⁴, Tao Luo^{2,3*}, Fumin Peng^{1*}

1 College of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230039, PR China.

2 Anhui Key Laboratory of Water Pollution Control and Wastewater Resource, Anhui Jianzhu University, Hefei, Anhui 230601, PR China.

3 School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, PR China.

4 School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, PR China.

[†] The authors contributed equally to this work.

* To whom correspondence should be addressed: luotao_edu@163.com (Tao Luo) &

pengfm79@gmail.com (Fumin Peng)

1

Synthesis of Zr-based MOFs with one hydroxyl group

Zr-based MOFs with one hydroxyl group was solvothermally prepared by a reaction of ZrCl₄ (0.125g) was dissolved in a mixed solvent of DMF/HCL (12mL, 10:2, v/v) and 2-Dihydroxyterephthalic acid (0.099g) was dissolved in 10 mL DMF. The two as-prepared solutions were mixed and stirred for 30 minutes. The mixture was carried out in an Teflon-lined stainless-steel autoclave sealed and heated to 80 °C for 12 hours. Yellow powders were obtained and washed with water and ethanol solvents several times. Finally, the as-synthesized sample was dried under oven at 60 °C for 12 hours for further use.

Figure 1S (a) XRD patterns of Uio-66-(OH). (b)SEM of image of Uio-66-(OH) with scale of 600nm. (c)SEM of image of Uio-66-(OH) with scale of 300nm. (d) FTIR spectra of Uio-66-(OH).

Figure 2S (a) Particle size distribution histogram of Uio-66-(OH)₂. (b) Particle size distribution histogram of Uio-66-(OH).

Figure 3S (a) Thermogravimetric (TG) of Uio-66-(OH) under N_2 atmosphere. (b) N_2 adsorption-desorption isotherms of Uio-66-(OH).

Figure 4S The photocatalytic reduction of Cr(VI) effect of pollutant concentration on reduction of Uio-66-(OH) by using UV-vis.

Figure 5S Zeta potential of Uio-66-(OH)₂ as a function of pH value.

Table S1 The parameters of the porous structure for different samples.

Table S2 Elements, weight and Atomic in Uio-66- $(OH)_2$ after Photocatalytic experiments.

Figure 1S (a) XRD patterns of Uio-66-(OH). (b) SEM of image of Uio-66-(OH) with scale of 600nm.

(c)SEM of image of Uio-66-(OH) with size of 300nm. (d) FTIR spectra of Uio-66-(OH).

Figure 2S (a) Particle size distribution histogram of Uio-66-(OH)₂. (b) Particle size distribution histogram of Uio-66-(OH).

Figure 3S Thermogravimetric (TG) of Uio-66-(OH) under N2 atmosphere and N2 adsorption-desorption

isotherms.

Figure 4S

Figure 4S The photocatalytic reduction of Cr(VI) effect of pollutant concentration on reduction of materials by using UV-vis. (50 mg photocatalyst, 250 mL of 20ppm Cr(VI), reaction temperature is 25 °C, visible light, pH= 6.0)

Figure 5S

Figure 5S Zeta potential of Uio-66-(OH) $_2$ as a function of pH value.

Material	BET surface area (m ² g ⁻¹)	Pore volume (cm ³ g ⁻¹)
Uio-66-(OH) ₂	561.51	0.54
Uio-66-(OH)	788.24	0.85
Uio-66-(OH) ₂ after	292.01	0.58
photocatalytic		

 Table S1 The parameters of the porous structure for different samples.

Table S2 Elements, weight and Atomic in Uio-66-(OH)2 after Photocatalyticexperiments.

Element	Weight %	Atomic %
СК	34.18	51.23
O K	37.60	42.32
Zr K	22.31	4.40
Cr K	5.92	2.05