Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supporting Information

Reversible inter-conversion of copper(II) dimers bearing phenolate-based ligands

into their monomers: Theoretical and Experimental Visions

Pratibha Agarwal ^{a,#}, Akhilesh Kumar ^{b,#}, Richa ^a, Indresh Verma ^b, Rohan D. Erande ^c, Julia Klak^{*, d}, Antonio J. Mota^{*, e}, Amit Rajput^{*, a}, and Himanshu Arora ^{*, a}

^a School of Engineering and Sciences, G.D. Goenka University, Gurugram, India.	E-mail:	
himanshuiitk2004@gmail.com,+91 8860185079.		
^b Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 01	6, India	
^c Indian Institute of Technology Jodhpur, Jodhpur 342037, India.		
^d Faculty of Chemistry, University of Wroclaw, Wroclaw 50-383, Poland.		
^e Department of Inorganic Chemistry, Faculty of Science, University of Granada, 1 Spain.	8071, Granada,	
^f Department of Chemistry, Axis Institute of Technology & Management Kanpur, K	anpur, India	
[#] Both the authors have equal contribution.		
1. Perspective view of complex 2	Fig. S1	
2. Perspective view of complex 4	Fig. S2	
3. Temperature dependence of experimental $\chi_m T$ (χ_m per 1 Cu ^{II} atom) for 3 and 4		
	Fig. S3	
4. Field dependence of the magnetization (M per Cu ₂ entities) for 1 a	nd 2	
	Fig. S4	
5. Field dependence of the magnetization (M per Cu_2 entities) for 3 a	nd 4.	
	Fig. S5	
6. EPR (X-band) spectra of powdered samples 3 and 4 at 77 K	Fig. S6	
7. Bond lengths and angles of 1-4.	Table S1	
8. Spin density values for selected atoms on complexes 1 and 2	Table S2	
9. Electronic properties of the metal complexes in CH ₃ CN solution	Table S3	
10. UV-Vis of 1-4 in CH ₃ CN	Fig. S7-S10	
11. UV-Vis of HL ¹ and HL ² in CH ³ CN	Fig. S11	
12. Cyclic Voltammogram of $[Cu_2L_2^1]$ and $[Cu_2L_2^2]$ in CH ₃ CN	Fig. S12	
13 Cyclic Voltammogram of 3 and 4 in CH ₃ CN	Fig. S13	

- 14. Spectral change of the titration of $[Cu_2L^2_2]$ (1.0 × 10⁻³ M) by pyridine (0 0.004 M) in CH₃CN Fig. S14
- 15. ESR spectra of (a) [CuL¹(py)]⁺ and (b) [CuL²(py)]⁺ generated from the dimer by adding pyridine Fig. S15
- 16. Schematic pathway for the monomer to dimer conversion for the thermodynamic process Fig. S16
- 17. Spectral change of the titration of $[Cu_2L^2_2](ClO_4)_2$ (1.0 \times 10⁻³ M) by HClO₄ (0–

Fig. S17

- 2.5 eq.) in CH₃CN
- 18. Spectral change of the titration of $[CuL^2(CH_3CN)(OClO_3](ClO_4) (1.0 \times 10^{-3} \text{ M})]$ by Et_3N (0-1 eq.) in CH_3CNFig. S18

Fig. S1 Perspective view of the structure of $[Cu_2(L^2)_2](ClO_4)_2 \cdot CH_3CN$ (2). Only donor atoms are labeled. All the hydrogen atoms are omitted for clarity.

Fig. S2 Perspective view of the structure of [Cu(HL²)(NCCH₃)(OClO₃)](ClO₄)•CH₃CN
(4). Only donor atoms are labeled. All the hydrogen atoms are omitted for clarity.

Fig. S3 Temperature dependence of experimental $\chi_m T$ (χ_m per 1 Cu^{II} atom) for **3** and **4**.

Fig. S4 Field dependence of the magnetization (*M* per Cu₂ entities) for 1 and 2. The solid line is the Brillouin function curve for the system of two uncoupled spins with S = 1/2 and g = 2.0.

Fig. S5 Field dependence of the magnetization (*M* per 1 Cu^{II} atom) for **3** and **4**. The solid line is the Brillouin function curve for one uncoupled spin with S = 1/2 and g = 2.0.

Fig. S6 EPR (X-band) spectra of powdered samples 3 and 4 at 77 K.

Table S1. Selected Bond Lengths (Å), and Angles (°) in $[Cu_2(L^1)_2](ClO_4)_2 \cdot 2CH_3CN$ (1), $[Cu_2(L^2)_2](ClO_4)_2 \cdot CH_3CN$ (2), $[Cu(HL^1)$ (NCCH₃)](ClO₄)₂ (3) and $[Cu(HL^2)(NCCH_3)(OClO_3)](ClO_4) \cdot CH_3CN$ (4).

1			
N(3)-Cu-N(2)#	83.9(2)	N(3)-Cu-N(1)#	144.4(2)
N(2)-Cu-O(1)#	91.09(19)	N(1)-Cu-O(1)#	102.4(2)
N(1)-Cu-N(2)#	80.1(2)		
# [1-x, 1-y, 1-z]			
2			
Cu(2)–O(2)	1.9270(18)	N(1)-Cu(1)-N(3)#	134.83(9)
Cu(2)–O(2)\$	2.1074(19)	N(2)-Cu(1)-O(1)#	92.09(8)
Cu(2)–N(4)	2.014(2)	N(2)-Cu(1)-N(1)#	82.64(9)
Cu(2)–N(5)	2.003(2)	N(2)-Cu(1)-N(3)#	80.95(9)
Cu(2)–N(6)	2.088(2)	N(3)-Cu(1)-O(1)#	104.76(8)

Cu(2)…Cu(2)\$	3.0946(6)	N(4)-Cu(2)-N(6)\$ 137.65(9)	
		N(5)-Cu(2)-O(2)\$	92.04(8)
		N(5)-Cu(2)-N(6)\$	82.32(9)
		N(6)-Cu(2)-O(2)\$	109.05(8)
		N(5)-Cu (2)-N(4)\$	83.09(9)
		Cu(2)–O(2)–Cu(2)	100.09(8)
# [1-x, 1-y, 1-z], \$ [1-x, 1-y, 2-z]			
3			
N(4)-Cu-O(1)	106.34(12)	N(3)-Cu-N(4)	82.13(13)
N(5)-Cu-O(1)	87.06(12)	N(3)–Cu–N(5)	176.19(13)
N(4)-Cu-N(5)	94.95(13)		
4			
N(4)-Cu-O(1)	96.97(7)	N(3)-Cu-N(4)	100.29(8)
N(2)–Cu–O(1)	90.53(7)	N(2)-Cu-N(3)	81.77(8)
N(2)-Cu-N(4)	172.16(8)		

 Table S2. Spin density values for selected atoms on complexes 1 and 2.

Complex	1	2a	2b
Cu ^a	0.6290	0.6221	0.6213
O _{bridge} ^b	0.0977	0.0861	0.0785
N _{im/quin} ^b	0.0683	0.0491	0.0426
N _{tert} ^b	0.1205	0.1328	0.1372
N _{py} ^b	0.0654	0.0739	0.0753

^{*a*} Only a half of each structure is shown because they are centrosymmetric. All values on the same half have the same sign and opposite sign with respect to the other half. ^{*b*} Directly attached atoms in the magnetic orbital plane: O_{bridge} is the oxygen bridging atom in the magnetic orbital plane, $N_{im/quin}$ is the imidazolic nitrogen atom in complex 1 and quinolinic in complex 2, N_{tert} is the aminic, tertiary nitrogen atom, and N_{py} corresponds to the pyridinic nitrogen atom.

Complex	$\lambda_{\rm max}/{\rm nm}~(\epsilon/{\rm M}^{-1}~{\rm cm}^{-1})$
$[Cu_2(L^1)_2](ClO_4)_2 \bullet 2CH_3CN(1)$	293 (17600), 460sh (560), 870 (600)
$[Cu_2(L^2)_2](ClO_4)_2 \bullet CH_3CN(2)$	320sh (9680), 460sh (390), 870 (370)
[Cu(HL ¹)(NCCH ₃)](ClO ₄) ₂ (3)	272 (17200), 615 (120)
[Cu(HL2)(NCCH3)(OClO3)](ClO4)•CH3CN (4)	320sh (8500), 615 (130)
$[CuL^1(py)]^+$	470 (700), 730 (250)
[CuL ² (py)] ⁺	470 (1150), 660 (350)
HL ¹	287 (25000), 290 (12000)
HL ²	302 (15000), 315 (17000)

Table S3. Absorption spectra of the metal complexes in CH₃CN solution

Fig S7. UV-Vis of $[Cu_2(L^1)_2](ClO_4)_2 \cdot 2CH_3CN$ (1) in CH₃CN

Fig S8. UV-Vis of $[Cu_2(L^2)_2](ClO_4)_2 \bullet CH_3CN$ (2) in CH₃CN

Fig S9. UV-Vis of [Cu(HL¹)(NCCH₃)](ClO₄)₂ (3) in CH₃CN

Fig S10. UV-Vis of [Cu(HL²)(NCCH₃)(OClO₃)](ClO₄)•CH₃CN (4) in CH₃CN

Fig S11. UV-Vis of (a) HL^1 and (b) HL^2 in CH_3CN

Fig. S12 Cyclic voltammogram (100 mV/s) of 1 mM solution of (a) 1 at GC electrode and (b) 2 at platinum electrode in CH_3CN (0.1 M in TBAP). Indicated peak potentials are in V vs. Ag⁺/AgCl.

Fig. S13 Cyclic voltammogram (100 mV/s) of 1 mM solution of (a) **3** at GC electrode and (b) **4** at platinum electrode in CH_3CN (0.1 M in TBAP). Indicated peak potentials are in V vs. Ag⁺/AgCl.

Fig. S14 Spectral change of the titration of $[Cu_2L^2_2]$ (1.0 × 10⁻³ M) by pyridine (0 – 0.004 M) in CH₃CN. Inset: plot of $(A - A_0)^2/(A - A_\infty)$ vs. [pyridine]₂ for the titration. Black line: $[Cu_2L^1_2]^{2+}$ and other lines: $[Cu_2L^1_2]^{2+}$ with incremental addition of pyridine. (a) (b)

Fig. S15 ESR spectra of (a) $[CuL^1(py)]^+$ and (b) $[CuL^2(py)]^+$ generated from the dimer (10⁻³ M) by adding pyridine (4 ×10⁻³ M) in CH₃CN at 120 K; microwave frequency 9.414 GHz, modulation frequency 100 kHz, modulation amplitude 5 G, microwave power 6.31 mW.

Fig. S16 Schematic pathway for the monomer to dimer conversion for the thermodynamic process: $2Et_3N + 2[CuL^2(CH_3CN)]^{2+}$ (monomer) $\rightarrow Et_3N + Et_3NH^+ + Dimeric intermediate <math>\rightarrow 2Et_3NH^+ + [Cu_2L^2_2]^{2+}(CH_3CN)_2$ (dimer).

Fig. S17 Spectral change of the titration of $[Cu_2L^2_2](ClO_4)_2$ (1.0 × 10⁻³ M) by HClO₄ (0–2.5 eq.) in CH₃CN.

Fig. S18 Spectral change of the titration of $[CuL^2(CH_3CN)(OClO_3](ClO_4) (1.0 \times 10^{-3} \text{ M})$ by Et₃N (0–1 eq.) in CH₃CN.