Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

NEW JOURNAL OF CHEMISTRY

Synthesis, Characterization, Crystal Structure of Copper-glutamate Metal Organic frameworks (MOFs) and its Adsorptive Removal of Ciprofloxacin Drug from Aqueous Solution

Margaret D. Olawale^{a*}, Adedibu C. Tella^b, Joshua A. Obaleye^b, Juwon S. Olatunji^b

^a Department of Physical and Chemical Sciences, Elizade University, Ilara-Mokin, Ondo State, Nigeria

^b Department of Chemistry, P.M.B.1515, University of Ilorin, Ilorin, Kwara State, Nigeria

Table S1: Physical and Analytical Data of Copper Glutamate MOF

Ligand/MOF	Appearance	Appearance of metal	Yield (%)	Molecular	Melting	Elemental analysis		
	MOFs	salt	(70)	(g/mol)	$(^{\circ}C)$	⁷⁰ Iouile C	H	N
Glutamic acid	White	-	-	147.13	199	-	-	-
	powder					(40.78)	(6.12)	(9.51)
[Cu(Glu) ₂ (H ₂ O)].H ₂ O	Deep blue	Deep green	60	244.69	201	29.41	4.37	5.70
	crystals					(29.42)	(4.09)	(5.72)

Table S2: Hydrogen-Bond Geometry (Å, °) with symmetry for [Cu(Glu)₂(H₂O)].H₂O

symm.	D—H	Н…А	D····A	D—H···A
-x+1/2,y+1,z-1/2	0.96	2.59	3.3552 (17)	137 (1)
-x+3/2,-y+1,z-1/2	0.96	2.57	3.4134 (17)	146 (1)
x+1/2,-y+3/2,-z+1	0.86	2.21	3.41134 (17)	146 (1)
-x+3/2,-y+1,z+1/2	0.84	1.88	2.7046 (17)	169 (1)
x+1,y,z	0.82	1.96	2.7536 (17)	164 (1)
-	0.82	1.89	2.7042 (17)	171 (1)
	symm. -x+1/2,y+1,z-1/2 -x+3/2,-y+1,z-1/2 x+1/2,-y+3/2,-z+1 -x+3/2,-y+1,z+1/2 x+1,y,z	symm.D—H $-x+1/2,y+1,z-1/2$ 0.96 $-x+3/2,-y+1,z-1/2$ 0.96 $x+1/2,-y+3/2,-z+1$ 0.86 $-x+3/2,-y+1,z+1/2$ 0.84 $x+1,y,z$ 0.82-0.82	symm.D—HH···A $-x+1/2,y+1,z-1/2$ 0.962.59 $-x+3/2,-y+1,z-1/2$ 0.962.57 $x+1/2,-y+3/2,-z+1$ 0.862.21 $-x+3/2,-y+1,z+1/2$ 0.841.88 $x+1,y,z$ 0.821.96-0.821.89	symm.D—HH···AD···A $-x+1/2,y+1,z-1/2$ 0.962.593.3552 (17) $-x+3/2,-y+1,z-1/2$ 0.962.573.4134 (17) $x+1/2,-y+3/2,-z+1$ 0.862.213.41134 (17) $-x+3/2,-y+1,z+1/2$ 0.841.882.7046 (17) $x+1,y,z$ 0.821.962.7536 (17)-0.821.892.7042 (17)

Fig S1: Superimposition of FTIR of (A) glutamic acid and (B) [Cu(Glu)(H₂O)].H₂O

Fig. S2: Visible spectrum of glutamic acid

Fig. S3: Ultra-violet spectrum of [Cu(Glu)(H₂O)].H₂O

Fig. S4: Visible spectrum of [Cu(Glu)(H₂O)].H₂O

Fig. S5:Effect of Concentration on the Adsorption of Ciprofloxacin
[Cu(Glu)2(H2O)].H2O at pH of 6.0.

Fig. S6:Effect of Contact Time on the Adsorption of Ciprofloxacin over [Cu(Glu)2(H2O)].H2O
at Initial Ciprofloxacin Concentrations of 20 ppm and pH of 6.0.

Fig. S7:Effect of Temperature on the Adsorption of Ciprofloxacin over [Cu(Glu)2(H2O)].H2O
at Initial Ciprofloxacin Concentrations of 20 ppm and pH of 6.0.

Fig. S8:Effect of pH on the Adsorption of Ciprofloxacin over [Cu(Glu)2(H2O)].H2O at Initial
Ciprofloxacin Concentrations of 20 ppm.

Fig. S9: Plot of the Pseudo-First-Order Kinetics of the Ciprofloxacin Adsorption over [Cu(Glu)₂(H₂O)].H₂O at 20 ppm.

Fig. S10: Plot of the Pseudo-Second-Order Kinetics of the Ciprofloxacin Adsorption over [Cu(Glu)₂(H₂O)].H₂O at 20 ppm.

Fig. S11: Langmuir Isotherm Plot of the Ciprofloxacin Adsorption over [Cu(Glu)₂(H₂O)].H₂O.

Fig. S12: Freundlich Isotherm Plot of the Ciprofloxacin Adsorption over [Cu(Glu)₂(H₂O)].H₂O

Fig. S13: Temkin Isotherm Plot of the Ciprofloxacin Adsorption over [Cu(Glu)₂(H₂O)].H₂O

Fig. S14: Dubinin–Radushkevich Isotherm Plot of the Ciprofloxacin Adsorption over [Cu(Glu)₂(H₂O)].H₂O