Journal: New Journal of Chemistry

Electronic Supplementary Information

Fusion thienyl into backbone of electron acceptor in organic photovoltaic heterojunctions: a comparative study of BTPT-4F and BTPTT-4F

Rui-Rong Bai¹, Cai-Rong Zhang^{1*}, You-Zhi Wu², Mei-Ling Zhang¹, Yu-Hong Chen

¹, Zi-Jiang Liu ³, Hong-Shan Chen ⁴

¹ Department of Applied Physics, Lanzhou University of Technology, Lanzhou, Gansu

730050, China;

² School of Materials Science and Engineering, Lanzhou University of Technology,

Lanzhou, Gansu 730050, China;

³ Department of Physics, Lanzhou City University, Lanzhou, Gansu 730070, China

⁴ College of Physics and Electronic Engineering, Northwest Normal University,

Lanzhou, Gansu 730070, China

*Corresponding author: Cai-Rong Zhang;

E-mail address: zhcrxy@lut.edu.cn (C.R. Zhang).

Figure S1. The optimized molecular structures of BTPT-4, BTPTT-4F and P2F-EHp in solid phase (ω B97XD/CEP-121G*). The atomic serial numbers are also labeled in order to give geometrical parameters and the hydrogen atoms are omitted for clarity.

Figure S2. The optimized structures of P2F-EHp/BTPT-4F (top view (a) and side view (b)) and P2F-EHp/BTPTT-4F complexes (top view (c) and side view (d)) in solid phase (ωB97XD/CEP-121G*). The atomic serial numbers are also labeled in order to give geometrical parameters and the hydrogen atoms are omitted for clarity.

Figure S3. The selected frontier molecular orbitals for the BTPT-4F, BTPTT-4F, and P2F-EHp (H = HOMO, L = LUMO, ω B97XD/CEP-121G*, ω =0.002 Bohr⁻¹)

Figure S4. The Simulated absorption spectra of the electron acceptors (BTPT-4F and

BTPTT-4F).

Figure S5. The density of states (DOS) of P2F-EHp/BTPT-4F and P2F-EHp/BTPTT-4F complexes, where the full width at half maximum is 0.05 a.u. .

$(\mathbf{\omega}\mathbf{D})$ / $\mathbf{M}\mathbf{D}$ / $\mathbf{C}\mathbf{L}\mathbf{I}$ - 1210).							
Definition	Values	Definition	Values	Definition	Values		
		BT	PT-4F				
2-3	1.377	2-3-4	128.6	1-2-3-4	179.9		
4-5	1.381	3-4-5	124.8	2-3-4-5	-7.8		
5-6	1.431	4-5-6	132.9	3-4-5-6	178.6		
6-7	1.789	5-6-7	115.4	4-5-6-7	179.3		
8-9	1.793	8-9-10	115.0	8-9-10-11	177.3		
9-10	1.432	9-10-11	133.0	9-10-11-12	-177.8		
10-11	1.379	10-11-12	124.8	10-11-12-13	-0.3		
12-13	1.377	12-13-14	123.5	11-12-13-14	-179.5		
16-17	1.480	15-16-17	119.3	15-16-17-18	56.7		
20-21	1.487	18-19-20	119.7	19-20-21-22	76.8		
		BTI	PTT-4F				
2-3	1.379	2-3-4	128.7	1-2-3-4	179.8		
4-5	1.383	3-4-5	126.1	2-3-4-5	-0.8		
5-6	1.425	4-5-6	134.5	3-4-5-6	-179.3		
6-7	1.784	5-6-7	127.4	4-5-6-7	-0.2		
8-9	1.786	8-9-10	127.6	8-9-10-11	-1.2		
9-10	1.425	9-10-11	134.5	9-10-11-12	179.2		
10-11	1.382	10-11-12	126.0	10-11-12-13	-0.4		
12-13	1.379	12-13-14	123.6	11-12-13-14	-179.6		
16-17	1.472	15-16-17	118.3	15-16-17-18	-77.9		
20-21	1.475	19-20-21	119.3	19-20-21-22	-101.3		
23-24	1.511	6-23-24	126.3	6-23-24-25	-82.2		
26-27	1.510	9-26-27	126.3	9-26-27-28	81.2		
		P2I	F-EHp				
2-3	1.477	2-3-4	125.6	1-2-3-4	133.1		
6-7	1.475	6-7-8	120.9	5-6-7-8	-149.6		
9-10	1.467	9-10-11	120.6	8-9-10-11	143.2		
13-14	1.465	13-14-15	118.2	12-13-14-15	-162.4		
16-17	1.476	16-17-18	127.6	15-16-17-18	139.4		
20-21	1.476	20-21-22	118.2	19-20-21-22	-147.2		
23-24	1.468	23-24-25	124.3	22-23-24-25	148.1		
27-28	1.494	26-27-28	121.1	26-27-28-29	57.6		
31-32	1.495	30-31-32	120.1	30-31-32-33	64.5		
35-36	1.495	34-35-36	121.6	34-35-36-37	116.1		
39-40	1.496	38-39-40	125.0	38-39-40-41	121.6		
43-44	1.479	42-43-44	122.6	42-43-44-45	-126.0		
47-48	1.467	46-47-48	123.8	46-47-48-49	88.9		
51-52	1.513	50-51-52	122.1	50-51-52-53	74.5		
55-56	1.513	54-55-56	123.5	54-55-56-57	-105.9		
59-60	1.467	58-59-60	123.3	58-59-60-61	86.5		
63-64	1.477	62-63-64	121.5	62-63-64-65	63.1		
67-68	1.515	66-67-68	122.4	66-67-68-69	-76.6		
71-72	1.514	70-71-72	123.0	70-71-72-73	82.3		

Table S1. The selected bond length (in Å), bond angles and dihedral angles (in[°]) for the optimized monomers of P2F-EHp, BTPT-4F and BTPTT-4F in solid phase $(\omega B97XD/CEP-121G^*)$

pliase (@B9/AD/CEF-1210 ⁺).						
Definition	Values	Definition	Values	Definition	Values	
		P2F-EHr	/BTPT-4F			
2-3	1 477	2-3-4	125.7	1-2-3-4	132.9	
6-7	1 475	6-7-8	120.5	5-6-7-8	-149.6	
9-10	1 467	9_10_11	120.0	8_9_10_11	144 4	
12 14	1.407	12 14 15	121.4	12 12 14 15	144.4	
15-14	1.400	15-14-15	120.5	12-13-14-13	-141.1	
10-1/	1.4/4	10-1/-18	125.8	15-10-1/-18	140.9	
20-21	1.4/4	20-21-22	120.1	19-20-21-22	-143.7	
23-24	1.464	23-24-25	120.7	22-23-24-25	175.5	
27-28	1.378	26-27-28	123.4	26-27-28-29	-177.7	
29-30	1.381	28-29-30	124.6	27-28-29-30	15.0	
30-31	1.430	29-30-31	132.4	28-29-30-31	179.8	
31-32	1 788	30-31-32	115.8	29-30-31-32	-172.8	
33-34	1 790	33-34-35	115.3	33-34-35-36	170.4	
34-35	1 433	34-35-36	132.4	34-35-36-37	179.4	
25 26	1.455	25 26 27	124.5	25 26 27 27	179.4	
27.20	1.376	26 27 29	124.5	26 27 28 20	-13.3	
37-38	1.3/6	30-3/-38	127.9	30-37-38-39	1/9.5	
41-42	1.495	40-41-42	120.4	40-41-42-43	-115.9	
45-46	1.495	44-45-46	121.4	44-45-46-47	-116.1	
49-50	1.494	48-49-50	121.6	48-49-50-51	-125.6	
53-54	1.494	52-53-54	120.3	52-53-54-55	116.0	
57-58	1.478	56-57-58	121.8	56-57-58-59	-121.0	
61-62	1 514	60-61-62	122.2	60-61-62-63	79 9	
65-66	1 515	64-65-66	122.2	64-65-66-67	773	
60 70	1.515	68 60 70	122.5	68 60 70 71	81 A	
09-70	1.470	00-09-70	121.1	00-09-70-71	102.7	
/3-/4	1.515	12-13-14	123.8	12-13-14-13	102.7	
//-/8	1.514	/6-//-/8	123.4	/6-//-/8-/9	-99.0	
81-82	1.483	80-81-82	120.3	80-81-82-83	51.3	
85-86	1.485	84-85-86	120.6	84-85-86-87	66.1	
		P2F-EHp	/BTPTT-4F			
2-3	1.479	2-3-4	125.9	1-2-3-4	-130.2	
6-7	1.475	6-7-8	120.7	5-6-7-8	31.5	
9-10	1.467	9-10-11	121.6	8-9-10-11	145.5	
13-14	1 464	13-14-15	119.8	12-13-14-15	-170.8	
16-17	1 475	16-17-18	126.4	15-16-17-18	135.6	
20 21	1.473	20 21 22	120.4	10 20 21 22	137.5	
20-21	1.4/4	20-21-22	120.0	19-20-21-22	-137.3	
23-24	1.405	25-24-25	119.0	22-23-24-23	1//.1	
27-28	1.380	26-27-28	123.5	26-27-28-29	1/9.8	
29-30	1.381	28-29-30	125.4	27-28-29-30	13.5	
30-31	1.421	29-30-31	134.8	28-29-30-31	-177.3	
31-32	1.780	30-31-32	127.8	29-30-31-32	7.2	
33-34	1.784	33-34-35	127.8	33-34-35-36	0.4	
34-35	1.424	34-35-36	134.5	34-35-36-37	-178.8	
35-36	1 382	35-36-37	126.1	35-36-37-38	-0.2	
37-38	1 379	36-37-38	128.7	36-37-38-39	179.3	
41 42	1.375	40 41 42	120.7	40 41 42 42	112.0	
41-42	1.495	40-41-42	120.5	40-41-42-43	-110.0	
43-40	1.495	44-45-46	120.5	44-45-40-47	-11/.5	
49-50	1.493	48-49-50	121.0	48-49-50-51	-119.6	
53-54	1.493	52-53-54	120.5	52-53-54-55	-97.9	
57-58	1.477	56-57-58	121.1	56-57-58-59	61.3	
61-62	1.514	60-61-62	122.1	60-61-62-63	77.3	
65-66	1.515	64-65-66	122.1	64-65-66-67	78.8	
69-70	1 477	68-69-70	120.6	68-69-70-71	67.3	
73-74	1 514	72_73_74	124.0	72_73_74_75	99.0	
77 70	1.514	76 77 70	127.0	76 77 70 70	07.0	
//-/ð	1.314	/0-//-/ð	123.3	/0-//-/8-/9	-7/.7	
81-82	1.478	80-81-82	120.4	80-81-82-83	-117.5	
85-86	1.474	84-85-86	119.3	84-85-86-87	-66.7	

Table S2. The selected bond length (in Å), bond angles and dihedral angles (in[°]) for the optimized complexes of P2F-EHp/BTPT-4F and P2F-EHp/BTPTT-4F in solid phase (ω B97XD/CEP-121G*)

		· ·	0						
Dipole moment						Quadrupole n	noment		
	Х	Y	Z	XX	YY	ZZ	XY	XZ	YZ
BTPT-4F	-0.0349	12.1684	1.4482	-723.7970	-532.3592	-472.0758	6.0897	-29.3682	-2.7674
BTPTT-4F	0.0954	-2.1116	-0.9502	-907.7403	-637.5367	-620.4592	3.7497	-0.1615	-14.6708

Table S3. The components of the electric dipole moment (Debye) and quadrupolemoment (Debye-Ang) of BTPT-4F and BTPTT-4F molecules.

Table S4. The selected excitation energies, excitation wavelengths, oscillator strengths (f), and the corresponding main transition configurations for singlet excited states of BTPT-4F and BTPTT-4F molecules in solid phase with a separation parameter of ω =0.002. (H=HOMO, L=LUMO).

States	Main Transition configurations	E(aV/nm)	f
States		E(ev/nm)	1
01		1.0000/650.00	0.5(71
S1 62	$H \rightarrow L(97.36\%)$	1.9008/652.28	2.56/1
82 62	$H \rightarrow L + I(91.18\%)$	2.34/1/528.24	0.0034
83	$H-1 \rightarrow L(91.74\%)$	2.3907/518.60	0.0370
S4	$H \rightarrow L + 2(93.93\%)$	2.5/66/481.20	0.0738
85	$H-1 \rightarrow L+1(/1.66\%); H-3 \rightarrow L(21.86\%)$	2.7069/458.02	0.0058
S6	$H \rightarrow L + 3(91.02\%)$	2.7305/454.07	0.0910
S 7	$H-2 \rightarrow L(91.23\%)$	2.8677/432.35	0.0402
S 8	$H-3 \rightarrow L(73.19\%); H-1 \rightarrow L+1(21.10\%)$	2.8910/428.86	0.0605
S9	H→L+4(94.73%)	3.0696/403.91	0.0252
S10	H-1→L+2(91.81%)	3.1338/395.63	0.0113
S11	H-1→L+3(86.57%)	3.2189/385.18	0.0009
S12	H-3→L+1(62.65%);H-2→L+1(25.46%)	3.2406/382.60	0.0241
S13	H-2→L+1(64.00%);H-3→L+1(25.65%)	3.2635/379.91	0.1283
S14	H-4→L(82.98%)	3.3846/366.32	0.0111
S15	H-5→L(64.00%);H-2→L+2(18.06%)	3.4062/364.00	0.1667
S16	H-8→L(46.19%);H-8→L+3(25.95%);H-8→L+2(20.62%)	3.4870/355.56	0.0023
S17	H-9→L(45.85%);H-9→L+3(24.69%);H-9→L+2(19.84%)	3.4995/354.29	0.0048
S18	H-2→L+2(65.66%);H-5→L(21.15%)	3.5504/349.22	0.3750
S19	H-3→L+2(63.21%);H-2→L+3(19.14%)	3.6108/343.37	0.0499
S20	H-1→L+4(84.10%)	3.6182/342.67	0.1481
S21	$H-8 \rightarrow L+1(14.42\%); H-6 \rightarrow L(13.92\%); H-8 \rightarrow L+2(13.13\%);$	3.6400/340.62	0.0009
	H-8→L(12.05%)		
S22	H-8→L(13.57%);H-9→L+1(12.78%);H-8→	3.6477/339.90	0.0003
	L+1(12.68%);H-8→L+2(12.61%);H-9→		
	L+2(11.59%);H-9→L(10.01%)		
S23	H-2→L+3(19.94%);H-6→L(12.92%);H-3→L+2(12.68%);	3.6652/338.27	0.0006
	H-9→L(12.32%);H-9→L+1(10.31%)		
S24	H-3→L+3(48.60%);H-7→L(29.50%)	3.7082/334.35	0.0084
S25	H-6→L(46.76%);H-2→L+3(21.34%)	3.7216/333.14	0.0959
S26	H-7→L(58.44%);H-3→L+3(30.67%)	3.7581/329.92	0.0007
S27	$H-4 \rightarrow L+1(52.52\%); H-5 \rightarrow L+2(19.43\%)$	3.8121/325.24	0.7055
S28	$H-5 \rightarrow L+1(36.52\%); H-4 \rightarrow L+2(25.39\%);$	3.8332/323.45	0.0373
	$H-5 \rightarrow L+3(10.33\%); H-2 \rightarrow L+3(10.11\%)$		
S29	H-10→L(35.62%);H-4→L+1(29.47%)	3.9154/316.66	0.0025
S30	$H-5 \rightarrow L+1(33.79\%); 195 \rightarrow L(22.96\%); 194 \rightarrow L(10.06\%)$	3.9525/313.68	0.0267
S31	H-5→L+2(24.68%);H-6→L+1(23.62%);	3.9909/310.66	0.0759
	$H-10 \rightarrow L(21.75\%); H-4 \rightarrow L+3(13.83\%)$		
S32	H-3→L+4(77.74%)	3.9982/310.10	0.0395

S33	H-11→L(58.07%);H-4→L+2(14.27%)	4.0312/307.56	0.0680
S34	H-12→L(64.27%);H-4→L+2(13.56%)	4.0500/306.13	0.1042
S35	H-2→L+4(75.48%)	4.0810/303.81	0.0179
S36	H-7→L+1(79.92%)	4.1092/301.72	0.0483
S37	$H-6 \rightarrow L+1(51.91\%); 196 \rightarrow L(12.24\%); H-2 \rightarrow L+4(11.91\%)$	4.1223/300.76	0.0267
S38	H→L+5(75.56%)	4.1274/300.39	0.0285
S39	H-13→L(92.61%)	4.1744/297.01	0.0019
S40	H→L+6(72.27%)	4.2855/289.31	0.0050
	BTPTT-4F		
S1	H→L(96.53%)	1.8309/677.19	2.3682
S2	H→L+1(97.32%)	2.1533/575.78	0.2483
S 3	H→L+2(93.69%)	2.4581/504.39	0.1001
S4	H-1→L(93.60%)	2.4659/502.80	0.0165
S 5	H→L+3(92.40%)	2.5600/484.32	0.1743
S 6	H-1→L+1(57,77%):H-3→L(37,49%)	2.6145/474.23	0.0926
S 7	H-2→L(92.06%)	2.6495/467.95	0.3567
S 8	H-3→L(48.39%):H-1→L+1(35.29%)	2.8164/440.23	0.0286
S 9	H→L+4(81.34%)	2.8473/435.44	0.0236
S10	$H-2 \rightarrow L+1(75.51\%): H \rightarrow L+4(12.26\%)$	2.8963/428.08	0.1259
S11	H-3→L+1(87.86%)	2.9737/416.93	0.0074
S12	H-1→L+2(87.35%)	3.1362/395.33	0.0002
S13	$H-1 \rightarrow L+3(81,00\%):H-3 \rightarrow L+2(12,76\%)$	3.1829/389.53	0.0536
S14	$H-2 \rightarrow L+2(82,31\%)$	3 2247/384 48	0.0610
S15	$H-2 \rightarrow L+3(5674\%) \cdot H-4 \rightarrow L(2598\%)$	3 3024/375 44	0.0247
S16	$H = 4 \rightarrow L(66, 81\%) \cdot H = 2 \rightarrow L + 3(24, 08\%)$	3 3345/371 82	0.0048
S17	$H-5 \rightarrow L(86,69\%)$	3 3597/369 04	0.0040
S18	$H-3 \rightarrow L+2(73, 63\%) \cdot H-1 \rightarrow L+3(13, 62\%)$	3 4411/360 30	0 0004
S19	$H-3 \rightarrow L+3(45.21\%)$; $H-1 \rightarrow L+4(40.38\%)$	3.4701/357.29	0.0663
S20	$H-6 \rightarrow L(50.73\%): H-4 \rightarrow L+1(20.30\%): H-1 \rightarrow L+4(13.11\%)$	3.5188/352.35	0.6086
S21	$H-5 \rightarrow L+1(58,11\%):H-8 \rightarrow L(17,49\%)$	3.5326/350.97	0.0585
S22	$H-1 \rightarrow L+4(33.20\%): H-3 \rightarrow L+3(32.66\%): H-4 \rightarrow L+1(15.91\%)$	3.5390/350.33	0.0108
S23	$H-7 \rightarrow L(58,78\%):H-6 \rightarrow L+1(15,08\%)$	3.5726/347.04	0.0195
S24	$H-9 \rightarrow L+3(37,38\%):H-9 \rightarrow L+2(35,24\%):H-9 \rightarrow L(10,79\%)$	3.5768/346.63	0.0009
S25	$H-10 \rightarrow L+3(40.74\%):H-10 \rightarrow L+2(39.22\%):H-10 \rightarrow L(10.95\%)$	3.5795/346.37	0.0004
S26	$H-4 \rightarrow L+1(52.17\%):H-6 \rightarrow L(17.93\%)$	3.5855/345.79	0.0629
S27	$H-9 \rightarrow L(52.94\%):H-9 \rightarrow L+1(34.28\%)$	3.6268/341.85	0.0002
S28	$H-10 \rightarrow L(53.62\%):H-10 \rightarrow L+1(34.97\%)$	3.6284/341.70	0.0001
S29	H-3→L+4(82.24%)	3.7199/333.30	0.0404
S30	H-2→L+4(88.89%)	3.7456/331.01	0.0256
S31	$H-8 \rightarrow L(49.67\%): H \rightarrow L+5(29.67\%): H-5 \rightarrow L+1(11.23\%)$	3.7886/327.26	0.0156
S32	$H \rightarrow L+5(53.52\%):H-8 \rightarrow L(23.68\%):H-5 \rightarrow L+1(10.94\%)$	3.7968/326.55	0.0750
S33	$H-6 \rightarrow L+1(35.88\%); H-7 \rightarrow L+2(19.43\%): H-6 \rightarrow L+3(15.14\%)$	3.8628/320.97	0.2673
S34	$H-6 \rightarrow L+2(28.93\%); H-7 \rightarrow L+1(26.42\%): H-7 \rightarrow L+3(16.22\%)$	3.8708/320.30	0.3864
S35	H-7→L+1(22.26%):251→L(21.80%):H-6→L(14.15%)	3.9173/316.50	0.0023
S36	$H-4 \rightarrow L+2(49.32\%); H-7 \rightarrow L(16.78\%): H-6 \rightarrow L+1(16.35\%)$	3.9329/315.25	0.0548
S37	$H-8 \rightarrow L+1(59.87\%):H-11 \rightarrow L(13.11\%)$	3.9562/313.39	0.0901
S38	$H-4\rightarrow L+2(31.00\%):H-6\rightarrow L+1(18.96\%):H-7\rightarrow L+2(11.91\%)$	3.9846/311.15	0.0083
S39	H→L+6(74.02%)	4.0008/309.90	0.0171
S40	H-5→L+2(61.74%)	4.0214/308.31	0.0762
-	V		-

Table S5. Calculated ionization potentials of the donors IP_D, electron affinities of the acceptor EA_A, fundamental gaps defined as the difference between the ionization energy of donor and the electron affinity of acceptor (IP_D – EA_A), first adiabatic excitation energy of donor E_{S1A} , and exciton binding energy E_b (in eV)

excitation energy	gy of donor	E_{S1A} , and	exciton binding	g energy E_b	(mev)
Complex	IP _D	EA _A	IP _D - EA _A	E_{S1A}	E _b
P2F-EHp/BTPT-4F	5.7069	3.5191	2.1878	2.0856	0.4528
P2F-EHp/BTPTT-4F	5.7069	3.2106	2.4963	2.0909	0.4582

Table S6. The calculated relaxation energies (eV) of monomer BTPT-4F, BTPTT-4F and P2F-EHp molecules for the three electron transfer processes (ETP, charge transfer, exciton dissociation and charge recombination).

			U	/	
ETP		P2F-EHp		BTPT-4F	BTPTT-4F
СТ	$E^{D+}(Q_R) \to E^{D+}(Q_P)$	0.2260	$E^{A-}(Q_R) \to E^{A-}(Q_P)$	0.3539	0.2766
ED	$E^{D+}(Q_R) \rightarrow E^{D+}(Q_P)$	0.2260	$E^{A-}(Q_R) \to E^{A-}(Q_P)$	0.3539	0.2766
	$E^D(Q_P) \to E^D(Q_R)$	0.2179	$E^{A*}(Q_P) \to E^{A*}(Q_R)$	0.1513	0.0306
CR	$E^{D+}(Q_G) \to E^{D+}(Q_P)$	0.2260	$E^{A-}(Q_G) \to E^{A-}(Q_P)$	0.3539	0.2766
	$E^D(Q_P) \to E^D(Q_G)$	0.2179	$E^A(Q_P) \to E^A(Q_G)$	0.2726	0.2162

 Table S7. The GMH mode method is used to calculate the parameters required for the electronic coupling of the CT and CR processes.

	E _{S1} (eV)	∆µ(Debye)	μ _{tr} (Debye)	V(eV)
P2F-EHp/BTPT-4F	1.6869	27.7861	4.4865	0.2592
P2F-EHp/BTPTT-4F	1.7697	14.5706	13.8760	0.7834

Table S8. The parameters required for calculating electronic coupling of the ED processes. The selected molecular orbital are HOMO orbitals for both donor and acceptor

acceptor.							
Complex	H_{if} (meV)	S _{if} (meV)	E _i (eV)	E _f (eV)	V(meV)		
P2F-EHp/BTPT-4F	42.04206	-0.00382	-5.18418	-5.52649	21.57899		
P2F-EHp/BTPTT-4F	32.73044	-0.00303	-5.14478	-5.28057	16.94398		