Electronic supplementary information (ESI)

Exploring catecholase activity in dinuclear Mn (II) and $\mathrm{Cu}(\mathrm{II})$ complexes: An experimental and theoretical approach

M. Shahwaz Ahmad ${ }^{\text {a }}$, Mohd Khalid ${ }^{\text {a* }}$, M. Shahnawaz Khan ${ }^{\text {a }}$, M. Shahid ${ }^{\text {a }}$, Musheer Ahmad ${ }^{\text {b }}$, Monika ${ }^{\text {c }}$, Azaj Ansari ${ }^{\text {c }}$, Mo Ashafaq ${ }^{\text {a }}$
${ }^{a}$ Department of Chemistry, Aligarh Muslim University, Aligarh 202002
${ }^{b}$ Department of Applied Chemistry, Aligarh Muslim University, Aligarh 202002
${ }^{\text {cDDepartment of Chemistry, Central University of Haryana, Mahendergarh-123031, }}$ Haryana, India
*Corresponding author, Email: khalid215@gmail.com

Fig. S1. FTIR spectra of $\mathbf{1}$ and $\mathbf{2}$.

Fig. S2. Selected bond distances and bond angles for 1 and 2.

Fig. S3. (a) Formation of a 2D sheet network as a result of $\mathrm{O} \cdots \mathrm{H}$ and $\pi \cdots \pi$ interactions in $\mathbf{1}$. (b) Formation of a 2D sheet network through $\mathrm{O} \cdots \mathrm{H}, \mathrm{S} \cdots \mathrm{H}, \mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi \cdots \pi$ interactions in 2.

Fig. S4. Thermal UV-visible spectra of $\mathbf{1}$ (a) and 2 (b) and EPR spectra for $\mathbf{1}$ (c) and 2 (d).

Fig. S5. As-synthesized and simulated PXRD patterns for $\mathbf{1}$ and 2.

Fig. S6. Cyclic voltammogram of 2 obtained at a $100 \mathrm{mVs}^{-1}$ scan rate.

Fig. S7. Time-dependent UV-vis spectra for $\mathbf{1}\left(10^{-4} \mathrm{M}\right)$ upon the addition of (100-fold) 3,5DT BC ($10^{-2} \mathrm{M}$) in MeOH at 298 K .

Fig. S8. (a) ESI-MS spectrum (positive mode) of a mixture of $\mathbf{2}$ and 3,5-DTBC recorded in methanol.
(b) EPR spectrum of the complex and before and after mixing 3,5-DTBC.

Fig. S9. The ESP map front view and 3D-deformation density map showing the presence of CD regions (in red) and CC regions (in blue). The iso surfaces are drawn at 0.008 for $\mathbf{1}(\mathrm{a}, \mathrm{b})$, 2 (c, d).

Fig. S10. Intermolecular $\mathrm{O} \cdots \mathrm{H}$ interactions through red spots shown by Hirshfeld surface mapping over (a) curvedness, (b) shape index and the ESP back view for 1 (a), (b) and (c) and 2 (d), (e) and (f).
(a)

(c)

(b)

(d)

Fig. S11. The 2D-fingerprint plots of $\mathbf{1}$ (a) and (b), 2 (c), and (d) for showing different interactions.

Fig. S12. B3LYP (a) optimized structure (left) and its spin density (right) plot of $\mathbf{1}_{\text {(hs.,hs }}$) and (b) optimized structure (left) and its spin density plot (right) of the ${ }^{\mathbf{2}} \mathbf{2}$.

Table. 1S Bond Lengths for $\mathbf{1}$.

Atom	Atom	Length/ \AA
Mn1	S1	2.793(4)
Mn1	Ol^{1}	2.155(6)
Mn1	O1	2.223 (6)
Mn1	O4	2.115 (7)
Mn1	N1	2.260 (7)
Mn1	N2	2.251 (6)
S1	C14	1.837 (10)
S1	C15	1.777 (12)
O1	C13	1.276 (11)
O3	C16	1.248 (13)
O4	C16	1.292 (14)
N1	C1	1.353 (10)
N1	C12	1.359 (9)
N2	C10	1.341 (10)
N2	C11	1.369 (9)

Atom Atom Length/ $\boldsymbol{\AA}$
C1 C2 1.384 (12)
C3 C2 $1.376(13)$
C4 C3 1.411(13)
C4 C5 1.440 (11)
C6 C5 $1.336(13)$
$\mathrm{C} 7 \mathrm{C} 6 \quad 1.445(12)$
$\mathrm{C} 7 \quad \mathrm{C} 8 \quad 1.411$ (13)
C8 C9 1.366(14)
C10 C9 1.391(13)
C11 C7 1.429(10)
C11 C12 1.443(10)
C12 C4 1.419(10)
C13 O2 1.223(10)
C13 C14 1.515(14)
C16 C15 1.516(18)

Table. 2S Bond Lengths for 2.

Atom	Atom	Length/ \AA	Atom Atom		Length/ \AA
Cu 1	S1	2.7081 (7)	C3	C4	1.407(4)
Cu 1	O1	1.9687 (18)	C4	C5	1.431 (4)
Cu 1	$\mathrm{O1}{ }^{1}$	2.2997 (17)	C4	C12	1.401 (4)
Cu 1	O3	1.9704 (18)	C5	C6	1.349 (4)
Cu 1	N1	$2.008(2)$	C6	C7	1.436 (4)
Cu 1	N2	2.020 (2)	C7	C8	1.400 (4)
S1	C14	1.804 (3)	C7	C11	1.405 (4)
S1	C15	1.802 (3)	C8	C9	1.370 (4)
O1	C13	1.289 (3)	C9	C10	1.406 (4)
O2	C13	1.223 (3)	C11	C12	1.426 (4)
O3	C16	1.264 (3)	C13	C14	1.526 (4)
O4	C16	1.251 (3)	C15	C16	1.524 (4)
N1	C1	1.326 (3)	S2	C17	1.820 (3)
N1	C12	1.354 (3)	S2	$\mathrm{C} 17{ }^{2}$	1.820 (3)
N2	C10	1.325 (3)	O5	C18	1.212 (3)
N2	C11	1.360 (3)	O6	C18	1.324 (3)
C1	C2	1.401 (4)	C17	C18	1.499 (4)
C2	C3	1.367 (4)			

Table. 3S Bond Angles for 1.

Atom	Atom	Atom	Angle/ ${ }^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
O1 ${ }^{1}$	Mn1	S1	148.91(17)	C1	C2	C3	119.0(8)
O1	Mn1	S1	74.66 (18)	C2	C3	C4	120.0(8)
O1	Mn1	N1	167.9 (2)	C3	C4	C12	117.6(7)
O1 ${ }^{1}$	Mn1	N1	113.1 (3)	C5	C4	C3	123.3(7)
O4	Mn1	S1	75.4 (2)	C5	C4	C12	119.1(8)
O4	Mn1	Ol^{1}	94.9 (3)	C6	C5	C4	121.6 (7)
O4	Mn1	O1	93.7 (3)	C5	C6	C7	$121.3(7)$
O4	Mn1	N1	92.6 (2)	C6	C7	C11	119.1(8)
O4	Mn1	N2	160.0 (3)	C8	C7	C6	124.3 (7)
N1	Mn1	S1	97.0 (2)	C8	C7	C11	116.6(8)
N2	Mn1	S1	90.44 (19)	C9	C8	C7	119.6(8)
N2	Mn1	O1	96.1 (2)	C10	C9	C8	121.1(9)
N2	Mn1	Ol^{1}	104.3(2)	C9	C10	N2	121.3(9)
N2	Mn1	N1	74.9 (2)	C7	C11	N2	122.3(7)
C14	S1	Mn1	93.8 (4)	C7	C11	C12	119.1(7)
C15	S1	Mn1	95.3 (5)	C12	C11	N2	118.5(6)
C15	S1	C14	99.9 (5)	C4	C12	N1	$121.9(7)$
C13	O1	$\mathrm{Mn} 1^{1}$	125.0 (5)	C4	C12	C11	119.6(6)
C13	O1	Mn1	127.2 (6)	C11	C12	N1	118.4(6)
C16	O4	Mn1	129.1 (7)	O2	C13	O1	$124.7(10)$
C1	N1	Mn1	127.6(5)	C14	C13	O1	116.4 (8)
C1	N1	C12	118.4 (6)	C14	C13	O2	118.8 (10)
C12	N1	Mn1	114.0 (5)	C13	C14	S1	$114.7(7)$
C10	N2	Mn1	127.1 (5)	C16	C15	S1	117.1(8)
C10	N2	C11	118.9(7)	O4	C16	O3	121.1(15)
C11	N2	Mn1	113.9 (5)	C15	C16	O3	117.0(14)
C2	C1	N1	123.2 (8)	C15	C16	O4	121.9(9)

Table. 4S Bond Angles for 2.

Atom	Atom	Atom	Angle $/{ }^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
O1	Cu1	S1	81.09 (5)	C12	C4	C3	117.2 (2)
O1 ${ }^{1}$	Cu 1	S1	157.70 (5)	C12	C4	C5	118.4 (2)
O3	Cu1	S1	80.90 (5)	C6	C5	C4	121.8 (2)
O3	Cu 1	O1	92.37 (8)	C7	C6	C5	120.8 (2)
O3	Cu 1	Ol^{1}	91.71 (7)	C8	C7	C6	124.6 (2)
N1	Cu1	S1	102.06 (6)	C11	C7	C6	118.6 (2)
N1	Cu 1	O1	175.58 (8)	C11	C7	C8	116.8 (2)
N1	Cu 1	Ol^{1}	99.08 (7)	C9	C8	C7	119.8 (2)
N1	Cu1	O3	91.19 (8)	C10	C9	C8	119.8 (3)
N2	Cu1	S1	93.42 (6)	C9	C10	N2	121.8 (3)
N2	Cu 1	O1	94.81 (8)	C7	C11	N2	123.3 (2)
N2	Cu 1	Ol^{1}	96.47 (7)	C12	C11	N2	116.6(2)
N2	Cu 1	O3	170.06(8)	C12	C11	C7	120.2 (2)
N2	Cu1	N1	81.98 (9)	C4	C12	N1	123.1 (2)
C14	S1	Cu 1	90.24 (9)	C11	C12	N1	116.7 (2)
C15	S1	Cu 1	90.49(9)	C11	C12	C4	120.2 (2)
C15	S1	C14	103.25 (13)	O 2	C13	O1	124.6 (2)
C13	O1	Cu 1	125.19 (16)	C14	C13	O1	117.9 (2)
C13	O1	$\mathrm{Cu} 1{ }^{1}$	126.57 (16)	C14	C13	O2	117.3(2)
C16	O3	Cu 1	126.68 (17)	C13	C14	S1	118.15 (19)
C1	N1	Cu 1	128.90 (18)	C16	C15	S1	118.28 (18)
C12	N1	Cu 1	112.59 (16)	O4	C16	O3	123.0 (2)
C12	N1	C1	118.5 (2)	C15	C16	O3	121.8 (2)
C10	N2	Cu 1	129.28 (18)	C15	C16	O4	115.2 (2)
C11	N 2	Cu 1	$111.92(17)$	$\mathrm{C} 17{ }^{2}$	S2	C17	93.74 (18)
C11	N 2	C10	118.6(2)	C18	C17	S2	115.3 (2)
C2	C1	N1	122.0 (3)	O6	C18	O5	124.2 (3)
C3	C2	C1	120.0 (3)	C17	C18	O5	125.2 (3)
C4	C3	C2	119.1 (2)	C17	C18	O6	110.5 (2)
C5	C4	C3	124.4(2)				

Table S5. Possible spin interactions of the $\mathbf{1 .}$

Electronic Configurations

Spin States	Metal 1	Metal 2
${ }^{11} \mathbf{1}_{(\mathrm{ns}, \mathrm{hs})}$	$\uparrow \uparrow \uparrow \uparrow \uparrow$	$\uparrow \uparrow \uparrow \uparrow \uparrow$

Table S6. Computed selected structural parameters of $\mathbf{1}$ and 2.

				Bond lengths(\AA)			Bond angle (${ }^{\circ}$)								
	$\begin{aligned} & \text { Mn1- } \\ & \text { Mn2 } \end{aligned}$	$\begin{aligned} & \text { Mn1- } \\ & \text { O1 } \end{aligned}$	$\begin{aligned} & \hline \mathrm{O} 1- \\ & \mathrm{Mn2} \end{aligned}$	$\begin{aligned} & \text { Mn1- } \\ & \text { O2 } \end{aligned}$	$\begin{aligned} & \mathrm{O} 2- \\ & \mathrm{Mn} 2 \end{aligned}$	$\begin{aligned} & \hline \text { Mn1- } \\ & \text { N1 } \end{aligned}$	$\begin{aligned} & \text { Mn1- } \\ & \text { N2 } \end{aligned}$	$\begin{aligned} & \text { Mn2- } \\ & \text { N3 } \end{aligned}$	$\begin{aligned} & \text { Mn2- } \\ & \text { N4 } \end{aligned}$	Mn1-S	Mn2-S	$\begin{aligned} & \hline \text { Mn1- } \\ & \text { O1- } \\ & \text { Mn2 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Mn1- } \\ & \text { O2- } \\ & \text { Mn2 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { N1- } \\ & \text { Mn1- } \\ & \text { N2 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { N1- } \\ & \text { Mn2- } \\ & \text { N2 } \\ & \hline \end{aligned}$
${ }^{11} \mathbf{1}_{\text {(hs, hs) }}$	3.367	2.171	2.162	2.162	2.171	2.255	2.268	2.268	2.255	3.046	3.046	101.9	101.9	74.0	74.0
${ }^{1} 1_{(\mathrm{hss}, \mathrm{hs})}$	3.364	2.169	2.162	2.162	2.169	2.255	2.268	2.268	2.255	3.048	3.048	101.8	101.8	74.0	74.0
${ }^{7} \mathbf{1}_{\text {(is,is) }}$	3.384	2.301	1.999	1.999	2.301	2.025	1.997	1.997	2.025	2.926	2.926	103.5	103.5	81.0	81.0
${ }^{1} \mathbf{1}_{(\mathrm{is}, \mathrm{is})}$	3.392	2.304	1.998	1.998	2.304	2.025	1.996	1.996	2.025	2.927	2.927	103.8	103.8	81.0	81.0
${ }^{\mathbf{3}} \mathbf{1}_{(\mathrm{ls}, \mathrm{ls})}$	3.275	2.064	2.104	2.201	2.012	2.005	2.031	2.038	2.016	2.917	2.576	103.5	101.9	80.8	80.7
${ }^{1} \mathbf{1}_{\text {(ls, }}$	3.4	2.9	2.7	2.6	2.8	2.2	2.1	2.0	2.2	2.5	2.5	15	106	80.7	80.7
	$\begin{aligned} & \mathrm{Cu} 1- \\ & \mathrm{Cu} 2 \end{aligned}$	$\begin{aligned} & \mathrm{Cu1-} \\ & \mathrm{O} 1 \end{aligned}$	$\begin{aligned} & \hline \mathrm{O} 1- \\ & \mathrm{Cu} 2 \end{aligned}$	$\begin{aligned} & \mathrm{Cu1-} \\ & \mathrm{O} 2 \end{aligned}$	$\begin{aligned} & \mathrm{O} 2 _\mathrm{Cu} \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{Cu1} \mathrm{_N} \\ & 1 \end{aligned}$	Cu1_N	$\begin{aligned} & \mathrm{Cu2} \mathbf{N} \\ & 3 \end{aligned}$	$\mathrm{Cu}_{4}{ }^{2}$	Cu1_S	Cu2_S	$\begin{aligned} & \mathrm{Cu} 1- \\ & \mathrm{O} 1- \\ & \mathrm{Cu} 2 \end{aligned}$	$\begin{aligned} & \hline \mathrm{Cu} 1- \\ & \mathrm{O} 2- \\ & \mathrm{Cu} 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { N1- } \\ & \text { Cu1- } \\ & \text { N2 } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N} 1- \\ & \mathrm{Cu} 2- \\ & \mathrm{N} 2 \\ & \hline \end{aligned}$
${ }^{3} 2$	3.332	2.015	2.282	2.282	2.015	2.067	2.067	2.067	2.066	3.009	3.009	101.4	101.4	80.4	80.4
12	3.332	2.015	2.283	2.283	2.015	2.066	2.067	2.067	2.066	3.009	3.010	101.4	101.4	80.4	80.4

Table S7. Computed spin densities of $\mathbf{1}$ and $\mathbf{2}$.

Spin States	Mn1	Mn2
${ }^{11} \mathbf{1}_{\text {(bs, }} \mathbf{h s}$)	4.806	4.806
${ }^{1} 1$ (bs, ms)	4.819	-4.819
${ }^{7} 1_{\text {(is,is) }}$	3.261	3.261
${ }^{1} 1_{\text {(is,is) }}$	3.267	-3.267
${ }^{3} \mathbf{1}_{\text {(ls,ks) }}$	1.068	1.068
${ }^{1} 1_{(\mathbf{l s}, \mathrm{k})}$	1.075	-1.075
	Cu1	Cu2
${ }^{3} 2$	0.641	0.641
1_{2}	-0.643	0.643

