Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Information

Synergistic effects of MOF-76 on layered double hydroxides with superior activity for

extractive catalytic oxidative desulfurization

Siqi Liu^a, Xiaonan Li^a, Hong Zhang^{a,*}

^a Institute of Polyoxometalate Chemistry, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China

Fax: +86-0431-85098827; Tel: +86-0431-85099372;

E-mail: hope20130122@163.com, zhangh@nenu.edu.cn

Table of content

Fig S1: The preparation process of the MOF76@LDH.

FigS2: Fluorescence spectra of MOF76, LDH and MOF76@LDH.

FigS3: The structure of the MOF76.

FigS4: High-resolution Mg 2p and Ca 2p XPS spectrum of MOF76@LDH.

FigS5: Desulfurization kinetics of sulfur removal of DBT.

Table S1: The composition of MOF76@LDH composites, which was calculated from the ICP.

Table S2: The atomic ratio of Ca, Mg and Al was determind by ICP measurement.

The BET surface areas, pore volume and pore width of the 49 wt.% MOF76@LDH catalyst.

Table S3: Structures and sizes of the typical aromatic organosulfur compounds.

Table S4: The removal of DBT in various ODS systems with different apparent activation energies.

FigS1: The preparation process of the MOF76@LDH.

Fig S2:Fluorescence spectra of MOF76, LDH and MOF76@LDH.

FigS3: The structure of the MOF76.

FigS4: High-resolution Mg 2p and Ca 2p XPS spectrum of MOF76@LDH.

FigS5: Desulfurization kinetics of sulfur removal of DBT

LDH supporter	MOF76 addition	The weight percent in the composite tested by ICP(%)		Tb/Ca molar ratio	MOF weight percent in the	The denotation of
supporter	amount(mg)	Ca	Tb	motar ratio	composite(%)	composite
LDH	47	0.65	1.85	0.7156	40	40% wt.MOF76@LDH
LDH	70	0.61	2.07	0.8563	45	45% wt.MOF76@LDH
LDH	100	0.53	2.06	0.9782	49	49% wt.MOF76@LDH
LDH	117	0.63	2.44	0.9694	49	49% wt.MOF76@LDH
LDH	141	0.52	2.04	0.9778	49	49% wt.MOF76@LDH

 Table S1: The composition of MOF76@LDH composites, which was calculated from the ICP.

Catalyst	Ca:Mg:Al	BET surface area (m^2g^{-1})	Pore volume(cm ³ g ⁻¹)	Pore width(nm)	
MOF76@LDH	0.03:0.36:0.51	72.019	0.183	0.673, 0.814	
Table S2. The atomic ratio of Co. Mg and Al was determined by ICD measurement. The PET surface areas, nors volume					

 Table S2: The atomic ratio of Ca, Mg and Al was determind by ICP measurement. The BET surface areas, pore volume

and pore width of the 49% wt.MOF76@LDH catalyst.

substrate	structure	size
BT	s	3.62×5.51×6.51Å
DBT	S	3.62×5.57×7.86Å
4,6-DMDBT	L S	3.62×6.17×7.86Å

 Table S3: Structures and sizes of the typical aromatic organosulfur compounds.

Entry	Catalyst	Ea(KJ/mol)	Sulfur removal%
1	MIL-47	51	99.9
2	PTA@MOF-808A	29	100
3	PTA@MIL101(Al)-NH ₂	34.1	100
4	MDC-C	19	97.1
5	MDC-P	25	96.8
6	MOF808	22	100
7	MOF76@LDH	10.81	100

Table S4: The removal of DBT in various ODS systems with different apparent activation energies.