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1. Machine Learning

1.1 Architecture of ML algorithm

Gradient boosting regression is a Tree based classifier technique. As the name suggests

gradient descent along with boosting methods is applied. Gradient Descent is an iterative

optimization algorithm to find the minimum of a function. And boosting is a method by

which the performance of the model is improved by iteratively training weak learners on

the errors made by its predecessors. Gradient boosting algorithms mainly involves three

elements,

1. A loss function to be optimized,

2. A weak learner to make predictions, and

3. An additive model to add the weak learns to minimize the loss function.

After choosing a differentiable loss function L(y, F (x)), to be optimized a weak learner

is to be selected. The weak learners are combined using an additive model of the form:

F (x) =

M∑

m=1

γmhm(x)

where, (xi, yi)
n
i=1

is the training dataset, γm is the step length, hm(x) are the basis functions

(aka weak learners) and M are the number of iterations. In case of gradient boosting, decision

trees are used as weak learners. After calculating the loss, trees that reduce the loss are added

to the model.

hm = argminh

n∑

i=1

L(yi, Fm−1(xi) + h(xi))

The output for the new tree is then added to the output of the existing sequence of trees in

an effort to correct or improve the final output of the model

Fm(x) = Fm−1(x) + γmhm(x)
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To constrain the weak learners hyper parameters, such as a maximum number of layers,

nodes, splits or leaf nodes are used. Finally, a gradient descent procedure is used as an

additive model to minimize the loss while adding the trees. The steepest descent direction

is the negative gradient of the loss function L evaluated at the current model Fm−1 which

can be calculated for any differentiable loss function:

Fm(x) = Fm−1(x)− γm

n∑

i=1

∇FL(yi, Fm−1(xi))

where the step length γm is chosen using line search:

γm = argminγ

n∑

i=1

L(yi, Fm−1(xi))− γ
∂L(yi, Fm − 1(xi))

Fm − 1(xi)

A fixed number of trees are added or training stops once loss reaches an acceptable level or

no longer improves on an external validation dataset.

1.2 MAE vs Interatomic correlation

The correlation of variation of Mean Absolute errors (MAE) as a function of nearest neigh-

bor distances, as explained in detail for Al13 in the paper, is shown here for a few other

representative cases like Al5 , Al7, and Al9. We see the same correlation for all cases, i.e. re-

ducing MAE with increasing system representation. Also, jumps in error plots are observed

at places wherein differentiating information regarding the atomic arrangement is added in

the model. Demonstrating the correlation between MAE and nearest neighbor distances.
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A
bs

ol
ut

e 
M

ea
n 

E
rr

or
 (

eV
) 

D
is

ta
nc

e 
be

tw
ee

n 
te

st
 a

to
m

 &
 A

l a
to

m
 (

Å
)

Number of Nearest Neighbors

Figure 1: Mean absolute errors (on left y1 axis) is plotted in black line as a function of Number of Nearest neighbors included a
descriptors. The nearest neighbor distrobution lines are shown in colored lines with distances between adsorbate and Al atom
on the left y2 axis.
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2. DFT

’Orderedness’ of clusters: As evident from the figure, the interatomic distances could also be

used asindicators of an ‘ordered’ cluster. By ‘ordered’ cluster we mean a cluster with many

identical atoms in terms of the chemical environment that they experience. For example,

Al13 , Al36 , and Al75 are ‘ordered’ clusters because all the surface atoms are grouped into 2

(for Al13 ),6 (for Al36 ), and 13 (for Al75 ) classes whereas for all the disordered clusters, more

than half of surface atoms experience unique environment. For example, in case of Al67 there

are 34 distinct classes/atoms on the surface which also reflects into the interaction energy

patterns of that cluster towards an adsorbate.

For clarity we show enlarged pictures of one disordered (Al55) and one ordered (Al75)

cluster. Interaction energy curves and Nearest neighbor distribution plots for larger clusters

i.e. Al55 and Al75 are shown. The one to one correlation between nearest neighbor distances

and IE holds.
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Figure 2: The figure shows variation in the interatomic distances as function of nearest neighbors for all surface atoms of few
representative ‘ordered’ and ‘disordered’ clusters. The inset figure shows distance dependent interaction energy of all surface
atoms of these clusters. Atoms with identical nearest neighbor distribution also exhibit identical interaction energy pattern
towards a test atom
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Figure 3: Nearest neighbor vs Interatomic distance plot for Al55
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Figure 4: Interaction energy curves for Al55
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Figure 5: Nearest neighbor vs Interatomic distance plot for Al75
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Figure 6: Interaction energy curves for Al75
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