Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Information

Synthesis and biological evaluation of virtually designed fluoroquinolone analogs against fluoroquinolone-resistant Escherichia coli intended for UTI

Sakthivel Balasubramaniyan^a, Navabshan Irfan^b, Chinnaiyan Senthilkumar^c, Appavoo Umamaheswary^a, Ayarivan Puratchikody^a

^aDrug Discovery and Development Research Group, Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirapalli-620024, Tamilnadu, India.

^bSchool of Pharmacy, B.S. Abdur Rahman Crescent Institute of Science & Technology, Chennai-600048. Tamilnadu. India.

^cCentral Leather Research Institute-CSIR, Chennai- 600020. Tamilnadu. India.

*Corresponding author: Ayarivan Puratchikody, Email: puratchipharma@gmail.com.

Synthesis of ethyl 6-fluoro-7-nitro-4-oxo-1,4-dihydroquinoline-3-carboxylate (1a) (Gould–Jacobs reaction).

Spectral data :¹H NMR (400 MHz, DMSO-d6, ppm): δ 13.21 (1H), 8.51 (1H, s.), 7.94 (1H, d, J = 0.5 Hz), 6.56 (1H, s,), 6.49 (1H, s,), 4.86 (2H, q,), 1.11 (3H, t, J = 7.1 Hz). ¹³C NMR (100 MHz DMSO-d6): 175.2, 164.9, 154.9, 149.8, 141.1, 133.3, 121.8, 114.0, 111.0, 106.6, 106.3, 103.6, 60.1, 16.3. MS (ESI) m/z (% of relative abundance) calculated for [C₁₂H₉FN₂O₅]⁺ 280.211, Found 281.65 (M+1). Elemental analysis calculated C (51.44%), H (3.24%), N (10.2%), Found C (50.45%), H (3.56%), N (9.68%).

Synthesis of ethyl 7-amino-6-fluoro-4-oxo-1,4-dihydro quinoline-3-carboxylate (1b) (Reduction process).

Spectral data: ¹H NMR (400 MHz, DMSO-d6, ppm): δ 13.21 (1H, s), 8.52 (1H, s), 7.98 (1H, d, J = 0.5 Hz,), 6.58 (1H, s,), 6.41 (1H, s,), 4.85 (2H, q,), 3.31 (2H,s), 1.15 (3H, t, J = 7.1 Hz). ¹³C NMR (100 MHz DMSO-d6):175.2, 164.9, 154.8, 149.8, 141.1, 133.3, 121.8, 114.1, 106.6, 106.3, 103.6, 60.1, 16.3. MS (ESI) m/z (% of relative abundance) calculated for [C₁₂H₁₁FN₂O₃]⁺250.22, Found 251.40 (M+1). Elemental analysis calculated C (57.60%), H (4.43%), N (11.2%), Found C (56.47%), H (3.97%), N (10.81%).

Synthesis of 7-amino-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (1c) (Hydrolysis).

Spectral data: 1H NMR (400 MHz, DMSO-d6, ppm): δ 15.25(1H, s), 13.22 (1H, s), 8.58 (1H, s), 7.93 (1H, d, J = 0.5 Hz), 6.52 (1H, d, J = 0.5 Hz), 3.33 (2H, s). 13C NMR (100 MHz DMSO-d6):175.2, 164.9,154.9,149.8, 141.1, 121.8, 114.2, 111.1, 106.6, 106.3, 103.6. MS (ESI) m/z (% of relative abundance) calculated for [C₁₀H₇FN₂O₃]⁺ 222.17. Found 223.69. Elemental analysis calculated C (54.06%), H (3.18%), N (12.61%), Found C (53.10%), H (2.91%), N (11.23%).

General procedure of synthesis of 7-(3-chloro-2-oxoazetidin-1-yl)-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid derivatives (2a and 2b) (substitution reaction).

Spectral data (FQ-49): ¹H NMR (400 MHz, DMSO-d6, ppm): δ 14.63 (1H, s), 13.16 (1H, s), 8.69 (1H, s), 7.94 (1H, s), 7.34 (2H, ddd, J = 8.8), 7.22 (2H, ddd, J = 8.8), 6.89 (1H, s), 5.64 (1H, d, J = 5.5 Hz), 5.35 (1H, d, J = 5.5 Hz), 3.91-4.01 (2H, t, J = 7.4 Hz), 1.23-1.84 (6H, m), 0.86 (3H, t). ¹³C NMR (100 MHz DMSO-d6): 173.1,167.8, 166.6, 160.5,152.6, 149.2, 141.3, 139.6, 137.6,125.6, 122.2,114.2, 111.8, 106.3, 103.6, 69.0, 59.7, 58.1, 31.0, 29.2, 25.4, 22.1, 13.8: MS (ESI) m/z (% of relative abundance) calculated for [C₂₅H₂₄ClFN₂O₅]⁺ 486.92: found 487.84 (M+1). Elemental analysis: C (61.67%), H (4.97%), N (5.75%). Found C (61.66%), H (4.96%), N (5.72%).

Spectral (FQ-70): ¹H NMR (400 MHz, DMSO-d6, ppm): δ 15.33 (1H, s), 13.26 (1H, s), 8.66 (1H, s), 7.94 (1H, s), 7.36 (2H, ddd, J = 8.8), 7.12 (2H, ddd, J = 8.8), 6.89 (1H, s), 5.62 (1H, d, J = 5.5), 5.33 (1H, d, J = 5.7), 4.03-4.06 (2H, t, J = 7.2), 1.83 (2H, q), 1.25-1.39 (4H,m,), 0.88 (3H, t, J = 7.0). ¹³C NMR (100 MHz DMSO-d6): 173.9, 167.2, 166.0, 160.5, 152.6, 148.3, 141.1, 139.7, 137.0, 125.6, 122.2, 114.2, 111.0, 106.3, 103.8, 68.2, 59.6, 58.1, 28.7, 28.3, 22.7, 14.0. MS (ESI) m/z (% of relative abundance) calculated for [C₂₄H₂₂ClFN₂O₅]⁺ 472.12: Found 473.05 (M+1), Elemental analysis :C (60.96%), H (4.69%), N (5.92%). Found C (60.95%), H (4.66%), N (5.82%).

General procedure of synthesis of 6-fluoro-4-oxo-7-(4-oxo-1,3-thiazolidin-3-yl)-1,4-dihydroquinoline-3-carboxylic acid derivatives (2c-j) (substitution reaction)

Spectral data of (FQ-131): ¹H NMR (400 MHz, DMSO-d6, ppm): δ 15.49 (1H, s), 13.29 (1H, s), 8.69 (1H, s), 7.85 (1H, s), 7.30-7.48 (7H, m), 6.94 (2H, ddd, J = 8.8), 6.36 (1H, s), 3.89-4.08 (2H, d, J = 15). ¹³C NMR (100 MHz DMSO-d6): 173.8, 170.6, 166.0, 160.4, 152.4, 148.3, 141.0, 139.3, 136.7, 128.7, 127.8, 122.2, 114.2, 111.0, 106.3, 103.8, 69.7, 68.2, 34.6. ESI m/z (% of relative abundance) calculated for [C₂₆H₁₉FN₂O₅S]⁺ 490.21: Found 491.35 (M+1) Elemental analysis :C(63.67%), H (3.90%), N (5.71%). Found C (63.56%), H (3.91%), N (5.72%).

Spectral data (FQ-132): ¹H NMR (400 MHz, DMSO-d6, ppm): δ 15.43 (1H, s), 13.33 (1H, s), 8.51 (1H, s), 7.88 (1H, s), 7.33 (2H, d, J = 8.4 Hz), 7.08 (2H, d, J = 8.8), 6.80 (1H, d, J = 0.5 Hz), 6.35 (1H, s), 3.97 (2H, q,), 3.89 (2H, d, J = 15.4 Hz), 1.78 (4H, m,) 0.86 (3H, t, J = 7.1 Hz). ¹³C NMR (DMSO): 173.9, 170.0, 166.1, 160.3, 152.6, 148.3, 141.1, 139.1, 137.0, 127.1, 111.0, 106.1, 103.1, 68.9, 68.5, 34.1, 32.7, 19.1, 13.0. ESI m/z (% of relative abundance) calculated for [C₂₃H₂₁FN₂O₅S]⁺ 456.11: Found 457.21 (M+1). Elemental analysis: C (60.52%), H (4.64%), N (6.14%), Found C (60.50%), H (4.54%), N (6.12%).

Spectral data of (FQ-137). ¹H NMR (400 MHz, DMSO-d6, ppm): δ 15.49 (1H, s), 13.86 (1H, s), 9.36 (2H, s), 8.76 (1H, s), 7.89 (1H, d, J = 0.5 Hz), 7.32 (1H, d, J = 2.6 Hz), 6.90 (1H, d, J = 0.5 Hz), 6.88 (1H, d, J = 8.4), 6.65 (1H, d, J = 8.4Hz), 6.64 (1H, s,), 3.9-4.05 (2H, m,). ¹³C NMR (100 MHz DMSO-d6): 173.9, 170.1, 166.0 152.5, 148.9 146.6, 145.1, 141.0, 137.2, 136.9, 136.9, 127.0, 122.2, 113.9, 111.0, 106.0, 103.6, 68.0, 34.0. ESI m/z (% of relative abundance) calculated for [C₁₉H₁₃FN₂O₆S]⁺ 416.38. Found 417.42 (M+1) Elemental analysis: C (54.81%), H (3.15%), N (6.73%), Found C (54.71%), H (3.10%), N (6.70%).

Spectral data of (FQ-147): ¹H NMR (400 MHz, DMSO-d6, ppm): δ 15.48 (1H, s), 13.22 (1H, s), 9.84 (1H, s), 8.63 (1H, s), 6.74-7.89 (5H, m), 6.39 (1H, s), 3.9 (2H, q,), 1.26 (3H, t), 3.6 (2H, d, J = 8.3). ¹³C NMR (100 MHz DMSO-d6): 174.0, 171.1, 166.0 152.9, 148.2, 145.7, 141.3, 137.1, 136.1, 127.1, 122.0, 115.3, 111.1, 106.1, 103.3, 68.8, 64.3, 34.5, 14.3. ESI m/z (% of relative abundance) calculated for [C₂₁H₁₇FN₂O₆S]⁺ 444.07. Found 445.35 (M+1). Elemental analysis calculated: C (56.75%), H (3.86%), N (6.30%). Found C (56.65%), H (3.56%), N (6.22%).

Spectral data of (FQ-151): ¹H NMR : δ 14.64 (1H, s), 13.19 (1H, s), 8.54 (1H, s), 6.89 (5H, m), 6.34 (1H, s), 4.01 (2H, t, J = 7.4 Hz), 3.67(2H, t, J = 15.9 Hz), 1.23 (6H, m), 0.86 (3H, t, J = 7.0 Hz). ¹³C NMR (100 MHz DMSO-d6): 173.1, 170.12, 166.5, 160.2, 152.6, 149.2, 141.3, 139.6, 137.6, 127.4, 122.2, 114.2, 111.8, 106.3, 103.6, 68.5, 34.9, 31.9, 29.2, 25.4, 22.1, 22.1, 14.0. MS (ESI) m/z (% of relative abundance) calculated for [C₂₅H₂₅FN₂O₅S]⁺ 484.14. Found 485.38 (M+1). Elemental analysis calculated C (61.97%), H (5.20%), N (5.78%). Found C (61.92%), H (5.22%), N (5.68%).

Spectral data (FQ-172): ¹H NMR (400 MHz, DMSO-d6, ppm),δ 15.39 (1H, s), 13.26 (1H, s), 8.70 (1H, s), 6.88-7.82 (5H, m), 6.33 (1H, s), 4.03 (3H, t, J = 7.4 Hz), 3.70-3.99 (2H, t, J = 15.6 Hz), 1.28-1.89 (6H, m), 1.29 (1H, s,), 0.89 (3H, t, J = 7.0 Hz). ¹³C NMR (100 MHz DMSO-d6): 172.9, 168.9, 166.0, 160.5, 152.5, 148.3, 141.1, 139.7, 137.3, 127.3, 122.2, 114.2, 111.1, 106.3, 103.8, 68.5, 68.2, 34.3, 28.7, 22.6, 14.0. MS (ESI) m/z (% of relative abundance) calculated for [C₂₄H₂₃FN₂O₅S]⁺ 470.21. Found: 471.32 (M+1). Elemental analysis calculated C (61.27%), H (4.93%), N (5.95%). Found C (61.25%), H (4.82%), N (5.91%).

Spectral data of (FQ-177): ¹H NMR (400 MHz, DMSO-d6, ppm): δ 15.39 (1H, s), 13.26 (1H, s), 8.70 (1H, s), 6.88-7.82 (5H, m), 6.34 (1H, s), 4.01(3H, t, J = 15.9 Hz), 3.64 (2H, t, J = 15.9 Hz), 1.80 (2H, d, J = 7.5 Hz), 0.91 (3H, t, J = 7.5 Hz). ¹³C NMR (100 MHz DMSO-d6): 173.9, 170, 166.1, 160.3, 152.6, 148.3, 141.1, 139.1, 137.0, 127.1, 122.1, 114.2, 111, 106.12, 103.10, 70.02, 68.53, 34.17, 22.78, 10.55. MS (ESI) m/z (% of relative abundance) calculated for [C₂₂H₁₉FN₂O₅S]⁺ 442.25 Found 443.28. Elemental analysis calculated C (59.72%), H (4.33%), N (6.33%). Found C (59.62%), H (4.31%), N (6.30%).

Spectral data of (FQ-182): ¹H NMR (400 MHz, DMSO-d6, ppm): δ15.45 (1H, s), 13.22 (1H, s), 8.69 (1H, s), 7.98-6.90- (5H, m), 6.48 (1H, s), 3.65 (2H, dd, J = 15.9 Hz). ¹³C NMR (100 MHz DMSO-d6): 174, 171.1, 166, 153.1, 152.9, 148.2, 141.3, 137.1, 136.1, 128.7, 122, 116.3, 111.1, 106.1, 103.3, 68.8, 34.5. MS (ESI) m/z (% of relative abundance) calculated for [C₁₉H₁₃FN₂O₅S]⁺ 400.42. Found: 401.33. Elemental analysis calculated C (57.00%), H (3.27%), N (7.00%). Found C (57.10%), H (3.13%), N (7.02%).

Table S1

Multiple Linear Regression Model

MLR algorithm developed an activity predicting equation using structural properties of 45 training set compounds. It contains the following equation:

[FQ-MLR] = -109.2 + 160.5 * [ALogP] + 21.78 * [Molecular Weight] + 79.55 * [No. of HBD] + 67.48 * [No. of HBA] - 356.1 * [No. of RB] - 1035 * [No. of Rings] - 841.9 * [No of AR] + 9.641 * [MFSA] - 109.4 * [Count<ECFP 6:781519895>] - 109.4 * [Count<ECFP 6:-1100000244>] - 109.3 * [Count<ECFP 6:-1074141656>] - 109.3 * [Count<ECFP 6:-1076146] - 109.3 * [Count<ECFP 6:-10761466] - 109.3 * [Count<ECFP 6:-107614666] - 109.3 * [Count<ECFP 6:-1076146666] - 109.3 * [Count<ECFP 6 6:6428100 91 >] - 109.3 * [Count<ECFP 6:-182236392>] - 109.3 * [Count <ECFP 6:670515721>] + 261.6 * [Count<ECFP 6:-1674600 56>] - 109.3 * [Count<ECFP 6:-992506 539>] - 109.3 * [Count < ECFP 6:-1046436026>] - 25.29 * [Count < ECFP 6:-1059365 32 0>] + 82.69 * [Count < ECFP 6:7346 03939>] - 643.3 * [Count < ECFP 6:-1087070950>] - 35.92 * [Count < ECFP 6:-141 6572622>] - 109.3 * [Count < ECFP 6:-6553440 35>] - 109.2 * [Count < ECFP 6:978469901>] - 109.2 * [Count < ECFP 6:209 9 970318>] - 109.2 * [Count<ECFP 6:2132762635>] - 14.19 * [Count <ECFP 6:471356069>] - 249.6 * [Count <EC FP 6:-1811 420270>] - 769.3 * [Count <ECFP 6:-58633 1102 >] + 493.5 * [Count<ECFP 6:-1531301414>] - 197.3 * [Count < ECFP 6: 195189 4094>] - 525.5 * [Count < ECFP 6:-75767 9000>] - 365.9 * [Count < ECFP 6:-756348342>] + 290 * [Count<ECFP 6:-1 31128538 9>] - 109.2 * [Count <ECF P 6:220735655>] + 534.1 * [Count<E CFP 6:-786013480>] - 109.2 * [Count <EC FP 6:1717462980>] - 109.2 * [Count <EC FP 6:2106656448>]+66.62 * [Count< ECFP 6:8 64909220>]-551.8 * [Count<ECFP 6:-408704017>]-109.2 * [Count<ECFP 6:-662690992>]+121.1 * [Count<ECFP 6:-</pre> 8505 65340>]+149.5*[Count < ECFP 6:-273513279>]-283.4*[Count < ECFP 6:15596504 22>]-103.9*[Count < ECFP 6:1629170274>]+154*[Count < ECFP 6:-1236953626>]+65.93 * [Count<ECFP 6:-1475015 494>] - 140.8 * [Count<ECFP 6:-805779993>] + 129.1 * [Count<ECFP 6:1134083857>] + 411.6 * [Count<ECFP 6:157 2579716>] - 1.622 * [Count<ECFP 6:-4109624 35>] - 91.3 * [Count<ECFP 6:-1249514790>] - 162.5 * [Count<E CFP 6:-949 601813>] - 532.8 * [Count<ECFP 6:863188371>] + 128.8 * [Count<ECFP 6:-922113275>] + 71.22 * [Count <ECFP 6:770 547857>] + 192.3 * [Count<ECFP 6:-580726395>] + 158.3 * [Count<ECFP 6:655739385>] - 113.1 * [Count<ECFP 6:-124 2983843>] + 6.33 * [Count<ECFP 6:-249785178>] + 78.98 * [Count <ECFP 6:1530134975>] + 78.89 * [Count<ECFP 6:-526062157>] - 637.2 * [Count<ECFP 6:1043790491>] + 207.7 * [Count<ECFP 6:-1869628272>] - 249.2 * [Count<ECFP 6:-1331450522>] + 38.45 * [Count<ECFP 6:779801757>] - 153.7 * [Count<ECFP 6:-100084568>] - 333.8 * [Count<ECFP 6:34 2267039>] + 192.2 * [Count<ECFP 6:-1757441599>] - 742.8 * [Count<ECFP 6:-676041646>] - 186.1 * [Count<ECFP 6:1 151284196>] - 112.9 * [Count<ECFP 6:655871555>] + 90.3 * [Count<ECFP_6:344562737>].

Name	AlogP	Mol. Weight	No of AR	No of HBA	No of HBD	No of Rings	No of RB	MFSA	
9a1	-1.703	436.409	1	9	2	4	5	0.281	Ì
9a3	-1.951	422.383	1	9	2	4	6	0.293	
9b1	-1.687	406.383	1	8	2	4	4	0.282	
9b2	-1.562	420.41	1	8	2	4	6	0.27	
9b3	-1.935	392.357	1	8	2	4	5	0.296	
9b4	-0.328	482.479	2	8	2	5	7	0.239	
9b5	-1.935	392.357	1	8	2	4	5	0.296	
9b6	-1.586	406.383	1	8	2	4	6	0.283	
9b7	-0.352	468.453	2	8	2	5	7	0.249	
9b8	-1.935	392.357	1	8	2	4	5	0.296	
9b9	-1.586	406.383	1	8	2	4	6	0.283	
9b10	-0.352	468.453	2	8	2	5	7	0.249	
9c1	-1.022	440.828	1	8	2	4	4	0.268	
9c2	-0.898	454.855	1	8	2	4	6	0.257	
9c3	-1.271	426.802	1	8	2	4	5	0.28	
9c4	0.337	516.924	2	8	2	5	7	0.229	
9d1	-1.759	407.371	1	9	2	4	4	0.316	
9d2	-1.635	421.398	1	9	2	4	6	0.302	

		C . I		
Molecular	properties	of the	input 58	molecules

9d3	-2.008	393.345	1	9	2	4	5	0.331
9d4	-0.4	483.467	2	9	2	5	7	0.267
9d5	-2.008	393.345	1	9	2	4	5	0.331
9d6	-1.659	407.371	1	9	2	4	6	0.316
9d7	-0.424	469.441	2	9	2	5	7	0.278
9d8	-2.008	393.345	1	9	2	4	5	0.331
9d9	-1.659	407.371	1	9	2	4	6	0.316
9d10	-0.424	469.441	2	9	2	5	7	0.278
Bay	0.175	370.417	1	5	2	5	3	0.205
Bay-DNP	4.876	536.508	2	9	1	6	6	0.311
Cip-2NP	3.537	452.435	2	8	1	5	5	0.258
Cip-4NP	3.537	452.435	2	8	1	5	5	0.258
Cip-DAP	2.15	437.467	2	8	3	5	4	0.276
Cip-DFP	4.054	443.418	2	6	1	5	4	0.156
Cip-DMP	4.615	435.491	2	6	1	5	4	0.149
Cip-DNP	3.432	497.433	2	10	1	5	6	0.336
Cip-DOMe	3.61	467.489	2	8	1	5	6	0.18
CipEt	-1.648	305.304	1	6	3	3	5	0.327
CipEt-DNP	2.906	471.395	2	10	3	4	9	0.396
CipOMe	-1.286	361.368	1	7	2	4	4	0.237
CipOMe-DNP	3.415	527.459	2	11	1	5	7	0.331
Cip-P	3.643	407.437	2	6	1	5	4	0.165
Ciprofloxacin	-1.27	331.342	1	6	2	4	3	0.234
Enoxacin	-1.483	320.319	1	7	2	3	3	0.268
Gemifloxacin	-1.833	389.381	1	9	2	4	5	0.323
Lev-DNP	3.847	512.444	2	10	1	5	5	0.338
Levofloxacin	-1.374	361.368	1	7	1	4	2	0.206
Moxi-DNP	4.86	566.534	2	10	1	6	7	0.307
Moxifloxacin	-0.702	401.431	1	7	2	5	4	0.218
Nap-DNP	3.898	497.433	2	10	1	5	6	0.358
NApthyridone	-0.803	331.342	1	6	2	4	3	0.266
Nor-DNP	3.291	485.422	2	10	1	4	6	0.331
Norfloxacin	-1.411	319.331	1	6	2	3	3	0.228
Ofloxacin	-1.374	361.368	1	7	1	4	2	0.206
Sparfloxacin	-1.056	392.4	1	7	3	4	3	0.263
Trovafloxacin	-0.266	416.353	2	7	2	5	3	0.271
Zabofloxacin	-1.943	401.392	1	9	2	5	4	0.283
Gatifloxacin	-0.909	375.394	1	7	2	4	4	0.224
Grepafloxacin	-0.406	359.395	1	6	2	4	3	0.207
Clinafloxacin	-0.72	365.787	1	6	2	4	3	0.262

N	Experimental	Predicted	News	Experimental	Predicted
Name	activity	tivity activity		activity (mg)	activity
9a1	0.06	0.148155	Cip-4NP	0.017	0.017
9a3	0.25	0.161845	Cip-DFP	1.24	1.24
9b1	0.25	0.299436	Cip-DMP	1.24	1.24
9b2	0.03	0.004986	Cip-DNP	0.035	0.035
9b3	0.06	0.031483	Cip-DOMe	1.18	1.18
9b4	0.06	0.035579	CipOMe	0.011	0.027055
9b6	0.03	0.129673	CipOMe-DNP	0.059	0.042945
9b7	0.125	0.131344	Ciprofloxacin	0.015	0.015
9b8	0.06	0.031483	Enoxacin	0.01	0.01
9b9	0.06	0.129673	gemifloxacin	0.01	0.01
9b10	0.25	0.131344	Lev-DNP	0.029	0.029
9c1	1	0.74109	Levofloxacin	0.022	0.022
9c2	0.125	0.295755	Moxi-DNP	0.028	0.028
9c3	0.5	0.588155	Moxifloxacin	0.025	0.025
9d1	0.25	0.371319	Nap-DNP	0.0125	0.028555
9d2	0.06	-0.10294	NApthyridone	0.048	0.031945
9d3	0.008	0.157517	Norfloxacin	0.094	0.094
9d4	0.008	0.049618	Sparfloxacin	0.0125	0.0125
9d6	0.125	0.236425	Trovafloxacin	0.025	0.025
9d7	0.125	0.360058	Gatifloxacin	0.05	0.05
9d8	0.25	0.157517	Grepafloxacin	0.008	0.008
9d9	0.5	0.236425	Clinafloxacin	0.015	0.015
9d10	0.5	0.360058			

Experimental and Predicted activity of training set compounds

Table S2

Table S3

Namo	MIC (µg/ml)				
Name	Experimental activity	Predicted activity			
9c4	0.5	0.508			
Вау	0.022	0.032			
Bay-DNP	0.58	0.752			
Cip-2NP	0.035	0.017			
Cip-DAP	0.08	0.06			
CipEt	1.31	1.631			
CipEt-DNP	1.33	1.603			
Cip-P	0.077	0.07			
Nor-DNP	0.41	0.123			
Ofloxacin	0.062	0.022			
Zabofloxacin	0.015	0.016			

Experimental and Predicted activity of test set compounds

Table S4

Compound	Rf Value	Yield %	M.P (°C)	Solubility	Appearance
1a	0.56	90	65-67	DMF	Yellow
1b	0.61	75	102-103	Ethanol	Brown
1c	0.49	72	96-97	Methanol	Light brown
FQ-49	0.51	72	118-119	n-Hexane	Red
FQ-70	0.61	69	115-116	n-Hexane	Yellow
FQ-131	0.52	77	154-146	1,4 Dioxane	Orange yellow
FQ-132	0.57	74	133-134	1,4 Dioxane	Yellow

FQ-137	0.42	76	139-140	1,4 Dioxane	Light yellow
FQ-147	0.61	71	184-185	1,4 Dioxane	Brown
FQ-151	0.51	70	177-178	1,4 Dioxane	Light brown
FQ-172	0.60	72	144-145	1,4 Dioxane	Light brown
FQ-177	0.62	71	140-141	1,4 Dioxane	Black
FQ-182	0.48	77	128-129	1,4 Dioxane	Brown

Table S5

Activity comparison of FQ-151, FQ-172, FQ-132, FQ-177, FQ-49, and FQ-70 compounds

Mol. No	Structure	No. of Carbon (Alkyl chain)	ΜΙϹ (μΜ)
FQ-151	s r r r r r r r r r r	6-Chains	1.03
FQ-172		5-Chain	1.12
FQ-132		4-Chain	1.48
FQ-177		3-Chain	1.85

Figures

Fig. S1

Fig. S1. Separation of 45 molecules as training set compounds based on functional, atom type extended connectivity and path-based fingerprint analysis.

Fig. S2

Fig.S2 Experimental and predicted activity of the 11 test set FQ molecules

Fig. S3

The spectra of HPLC of synthesized compounds

HPLC conditions were set as follows: instrument model: Shimadzu LPGE 30A w/o mixer; detector: 5 μm C₁₈: 4.6 mm× 20 mm. The mobile phase A and B was water and acetonitrile (0.05% TFA) respectively. The gradient program was as follows: 0–20 min, 20% to 95% B; 30 min, 95% B (V/V).

FQ-49

FQ-131

FQ-137

Fig S4 Synthesized compounds with TLC Results

FT-IR spectrum of Ethyl 6-fluoro-7-nitro-4-oxo-1,4-dihydroquinoline-3-carboxylate (1a)

Fig S5 Characterization analysis

¹H NMR spectrum of Ethyl 6-fluoro-7-nitro-4-oxo-1,4-dihydroquinoline-3-carboxylate (1a)

Mass spectroscopy of Ethyl 6-fluoro-7-nitro-4-oxo-1,4-dihydroquinoline-3-carboxylate (1a)

FT-IR spectrum of Ethyl7-amino-6-fluoro-4-oxo-1,4- dihydroquinoline-3-carboxylate (1b)

¹H NMR spectrum of Ethyl7-amino-6-fluoro-4-oxo-1,4- dihydroquinoline-3-carboxylate (1b)

¹³C NMR spectrum of Ethyl7-amino-6-fluoro-4-oxo-1,4- dihydroquinoline-3-carboxylate (1b)

Mass spectrum of Ethyl7-amino-6-fluoro-4-oxo-1,4- dihydroquinoline-3-carboxylate (1b)

FT-IR Spectrum of 7-amino-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (1c)

¹H Spectrum of IR 7-amino-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (1c)

¹³C Spectrum of IR 7-amino-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (1c)

FT-IR spectrum of 7-{3-chloro-2-[4-(hexyloxy)phenyl]-4-oxoazetidin-1-yl}-6-fluoro-4-oxo-1,4-dihydroquinoline- 3- carboxylic acid (FQ-49).

¹H NMR spectrum of 7-{3-chloro-2-[4-(hexyloxy)phenyl]-4-oxoazetidin-1- yl}-6-fluoro-4-oxo-1,4-dihydroquinoline-3- carboxylic acid (FQ-49).

¹³C NMR spectrum of 7-{3-chloro-2-[4-(hexyloxy)phenyl]-4-oxoazetidin-1- yl}-6-fluoro-4-oxo-1,4-dihydroquinoline-3- carboxylic acid (FQ-49).

Mass spectrum of 7-{3-chloro-2-[4-(hexyloxy)phenyl]-4-oxoazetidin-1-yl}-6-fluoro-4-oxo-1,4-dihydroquinoline-3- carboxylic acid (FQ-49).

FT-IR spectrum of 7-{3-chloro-2-oxo-4-[4-(pentyloxy)phenyl]azetidin-1-yl}-6-fluoro-4-oxo -1,4-dihydroquinoline-3- carboxylic acid (FQ-70).

¹H spectrum of 7-{3-chloro-2-oxo-4-[4-(pentyloxy)phenyl]azetidin-1- yl}-6-fluoro-4-oxo-1,4-dihydroquinoline-3- carboxylic acid (FQ-70).

Mass spectrum of ¹H spectrum of 7-{3-chloro-2-oxo-4-[4-(pentyloxy)phenyl]azetidin-1-yl}-6-fluoro-4-oxo -1,4-dihydroquinoline-3- carboxylic acid (FQ-70).

FT-IR spectrum of 7-{2-[4-(benzyloxy)phenyl]-4-oxo-1,3-thiazolidin-3-yl}-6-fluoro-4-oxo-1,4-dihydroquinoline-3- carboxylic acid (FQ-131).

¹H NMR spectrum of 7-{2-[4-(benzyloxy)phenyl]-4-oxo-1,3-thiazolidin-3-yl}-6- fluoro-4-oxo-1,4-dihydroquinoline-3- carboxylic acid (FQ-131).

¹³C NMR spectrum of 7-{2-[4-(benzyloxy)phenyl]-4-oxo-1,3-thiazolidin-3- yl}-6-fluoro-4-oxo-1,4-dihydroquinoline-3- carboxylic acid (FQ-131).

Mass spectrum of 7-{2-[4-(benzyloxy)phenyl]-4-oxo-1,3-thiazolidin-3-yl}-6-fluoro-4-oxo-1,4-dihydroquinoline-3- carboxylic acid (FQ-131).

FT-IR spectrum of 7-[2-(4-butoxyphenyl)-4-oxo-1,3-thiazolidin-3-yl]-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (FQ-132).

¹H NMR spectrum of 7-[2-(4-butoxyphenyl)-4-oxo-1,3-thiazolidin-3-yl]-6-fluoro-4-oxo-1,4- dihydroquinoline-3-carboxylic acid (FQ-132).

¹³C spectrum of 7-[2-(4-butoxyphenyl)-4-oxo-1,3-thiazolidin-3-yl]-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (FQ-132).

Mass spectrum of 7-[2-(4-butoxyphenyl)-4-oxo-1,3-thiazolidin-3-yl]-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (FQ-132). **Peak Find - repaglidine standard**

FT-IR spectrum of 7-[2-(3,4-dihydroxyphenyl)-4-oxo-1,3-thiazolidin-3-yl]-6-fluoro-4-oxo-1,4-dihydroquinoline-3- carboxylic acid (FQ-137).

¹H NMR spectrum of 7-[2-(3,4-dihydroxyphenyl)-4-oxo-1,3-thiazolidin-3- yl]-6-fluoro-4-oxo-1,4-dihydroquinoline-3- carboxylic acid (FQ-137).

¹³C spectrum of 7-[2-(3,4-dihydroxyphenyl)-4-oxo-1,3-thiazolidin-3- yl]-6-fluoro-4-oxo-1,4-dihydroquinoline-3- carboxylic acid (FQ-137).

Mass spectrum of 7-[2-(3,4-dihydroxyphenyl)-4-oxo-1,3-thiazolidin-3-yl]-6-fluoro-4-oxo-1,4-dihydroquinoline-3- carboxylic acid (FQ-137).

FT-IR spectrum of 7-[2-(3-ethoxy-4-hydroxyphenyl)-4-oxo-1,3-thiazolidin-3-yl]-6 -fluoro-4-oxo-1,4- dihydroquinoline-3-carboxylic acid (FQ-147).

¹H NMR spectrum of 7-[2-(3-ethoxy-4-hydroxyphenyl)-4-oxo-1,3-thiazolidin-3-yl]-6-fluoro-4- oxo- 1,4- dihydroquinoline-3-carboxylic acid (FQ-147).

¹³C NMR spectrum of 7-[2-(3-ethoxy-4-hydroxyphenyl)-4-oxo-1,3-thiazolidin-3-yl]-6-luoro-4- oxo- 1,4- dihydroquinoline-3-carboxylic acid (FQ-147).

Mass spectrum of 7-[2-(3-ethoxy-4-hydroxyphenyl)-4-oxo-1,3-thiazolidin-3-yl]-6-fluoro-4- oxo- 1,4- dihydroquinoline-3-carboxylic acid (FQ-147).

FT-IR spectrum of 6-fluoro-7-{2-[4-(hexyloxy)phenyl]-4-oxo-1,3- thiazolidin-3-yl}-4-oxo-1,4- dihydroquinoline-3- carboxylic acid (FQ-151).

¹H NMR spectrum of 6-fluoro-7-{2-[4-(hexyloxy)phenyl]-4-oxo-1,3- thiazolidin-3-yl}-4-oxo- 1,4- dihydroquinoline-3- carboxylic acid (FQ-151).

¹³C NMR spectrum of 6-fluoro-7-{2-[4-(hexyloxy)phenyl]-4-oxo-1,3- thiazolidin-3-yl}-4-oxo- 1,4- dihydroquinoline-3- carboxylic acid (FQ-151).

Mass spectrum of 6-fluoro-7-{2-[4-(hexyloxy)phenyl]-4-oxo-1,3- thiazolidin-3-yl}-4-oxo-1,4- dihydroquinoline-3- carboxylic acid (FQ-151).

6-fluoro-4-oxo-7-{4-oxo-2-[4-(pentyloxy)phenyl]- 1,3-thiazolidin-3-yl}-1,4-dihydroquinoline -3- carboxylic acid (FQ-172).

¹H NMR spectrum of 6-fluoro-4-oxo-7-{4-oxo-2-[4-(pentyloxy)phenyl]- 1,3-thiazolidin-3-yl}- 1,4-dihydroquinoline -3- carboxylic acid (FQ-172).

¹³C NMR spectrum of 6-fluoro-4-oxo-7-{4-oxo-2-[4-(pentyloxy)phenyl]- 1,3-thiazolidin-3-yl}- 1,4-dihydroquinoline -3- carboxylic acid (FQ-172).

Mass spectrum of 6-fluoro-4-oxo-7-{4-oxo-2-[4-(pentyloxy)phenyl]- 1,3-thiazolidin-3-yl}- 1,4-dihydroquinoline -3- carboxylic acid (FQ-172).

FT-IR spectrum of 6-fluoro-4-oxo-7-[4-oxo-2- (4-propoxyphenyl)-1,3-thiazolidin -3-yl]-1,4-dihydroquinoline-3- carboxylic acid (FQ-177).

¹H NMR spectrum of 6-fluoro-4-oxo-7-[4-oxo-2-(4-propoxyphenyl) -1,3-thiazolidine -3-yl]-1,4- dihydroquinoline-3- carboxylic acid (FQ-177).

¹³C spectrum of 6-fluoro-4-oxo-7-[4-oxo-2-(4-propoxyphenyl)-1,3-thiazolidine -3-yl]-1,4- dihydroquinoline-3- carboxylic acid (FQ-177).

Mass spectrum of 6-fluoro-4-oxo-7-[4-oxo-2-(4-propoxyphenyl)-1,3-thiazolidine -3-yl]-1,4- dihydroquinoline-3- carboxylic acid (FQ-177).

FT-IR 6-fluoro-7-[2-(3-hydroxyphenyl)-4-oxo-1,3- thiazolidin-3-yl]-4-oxo-1,4- dihydroquinoline-3- carboxylic acid (FQ-182).

¹H NMR spectrum of 6-fluoro-7-[2-(3-hydroxyphenyl) -4-oxo-1,3- thiazolidin-3-yl] -4- oxo-1,4- dihydroquinoline-3- carboxylic acid (FQ-182).

Mass spectrum of 6-fluoro-7-[2-(3-hydroxyphenyl) -4-oxo-1,3- thiazolidin-3-yl] -4-oxo-1,4- dihydroquinoline-3- carboxylic acid (FQ-182).

/translation="MSDLAREITPVNIEEELKSSYLDYAMSVIVGRALPDVRDGLKPV HRRVLYAMNVLGNDWNKAYKKSARVVGDVIGKYHPHGDLAVYNTIVRMAQPFSLRYML VDGQGNFGSIDGDSAAAMRYTEIRLAKIAHELMADLEKETVDFVDNYDGTEKIPDVMP TKIPNLLVNGSSGIAVGMATNIPPHNLTEVINGCLAYIDDEDISIEGLMEHIPGPDFP TAAIINGRRGIEEAYRTGRGKVYIRARAEVEVDAKTGRETIIVHEIPYQVNKARLIEK IAELVKEKRVEGISALRDESDKDGMRIVIEVKRDAVGEVVLNNLYSQTQLQVSFGINM VALHHGQPKIMNLKDIIAAFVRHRREVVTRRTIFELRKARDRAHILEALAVALANIDP IIELIRHAPTPAEAKTALVANPWQLGNVAAMLERAGDDAARPEWLEPEFGVRDGLYYL TEOOAOAILDLRLOKLTGLEHEKLLDEYKELLDOIAELLRILGSADRLMEVIREELEL VREQFGDKRRTEITANSADINLEDLITQEDVVVTLSHQGYVKYQPLSEYEAQRRGGKG KSAARIKEEDFIDRLLVANTHDHILCFSSRGRVYSMKVYQLPEATRGARGRPIVNLLP LEQDERITAILPVTEFEEGVKVFMATANGTVKKTVLTEFNRLRTAGKVAIKLVDGDEL IGVDLTSGEDEVMLFSAEGKVVRFKESSVRAMGCNTTGVRGIRLGEGDKVVSLIVPRG DGAILTATQNGYGKRTAVAEYPTKSRATKGVISIKVTERNGLVVGAVQVDDCDQIMMI TDAGTLVRTRVSEISIVGRNTQGVILIRTAEDENVVGLQRVAEPVDEEDLDTIDGSAA EGDDEIAPEVDVDDEPEEE"

Fig. S6. The full-length sequence of mtDNA GyrA