Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

Bonding-antibonding state transition induces multiple electron modulations toward oxygen reduction reaction electrocatalysis

Qi Zhang,^a Haixia Zhong,^b Can Chen,^a Juexian Cao,^c Liwen Yang^a and Xiaolin Wei^{*,a}

^a School of Physics and Optoelectronics, Xiangtan University, Hunan, 411105, China.

^b Faculty of Chemistry and Food Chemistry, Dresden University of Technology, 01062 Dresden,

Germany

^c Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Hunan,

411105, China.

*Corresponding authors. E-mail address: xlw@xtu.edu.cn

Table of Contents

Density functional theory calculational details
Fig. S1. Calculated models and the corresponding formation energiesS
Fig. S2. The bond distanceS
Fig. S3. The adsorption free energy of intermediatesS
Fig. S4. The free energy diagrams for ORR on the Ni-N ₄ -2B nanosheet and B-doped graphen
nanoribbon S
Fig. S5. The free energy diagrams for ORR on the Ni-N ₃ BS1
Fig. S6. The calculated models of Ni-N ₃ B and its intermediatesS1
Fig. S7. The scaling relationship of ΔG_{OOH*} vs ΔG_{OH*} S1
Fig. S8. The density of state of B-doped Ni-N ₄ structuresS1
Table. S1. The ORR catalytic activity of B-doped Ni-N ₄ and M-N _x CS1
References

Calculated Procedures

As shown in **Fig. S1**, a serials of B-doped Ni-N₄ nanoribbons were constructed. The B atom locates in the edge of nanoribbon. In Ni-N₄-2B-2 and Ni-N₄-B-2, the two-fold coordinated B bonds to one C atom and one N atom. In Ni-N₄-2B-1, the two-fold coordinated B bonds to two C atoms. Besides, the edged C atoms of all nanoribbons were saturated with hydrogen. The formation energies (E_f) of these compounds were calculated to exam their stabilities. The more negative the formation energy means better stability of the compound. And the formation energy was obtained from the following equation:

$$E_f = \frac{E(A_n B_m) - n * E(A) - m * E(B)}{n + m}$$

where $E(A_nB_m)$ is the total energy of the A_nB_m , E(A) and E(B) are the normalized energies of corresponding elements A and B, respectively. As shown in **Fig. S1**, the formation energies of these compounds are negative, indicating a good thermodynamic stability.

The 4e⁻ORR process under alkaline condition consists of the formation of OOH*, O* and OH* and the OH* desorption, corresponding to the four element reactions as following:

$$O_2 + H_2O(1) + e^- \rightarrow OOH^* + OH^-$$

 $OOH^* + e^- \rightarrow O^* + OH^-$

 $O^* + H_2O(l) + e^- \rightarrow OH^* + OH^-$

 $OH^* + e^- \rightarrow OH^-$

Where * represents the reaction site. The overall reaction scheme of O₂ reduction to OH⁻ in alkaline environment is:

 $O_2(g) + 2H_2O(l) + 4e \rightarrow 4OH^-$

Since it is difficult to obtain the exact free energy of OOH, O, and OH radicals in the electrolyte solution, the adsorption free energy Δ GOOH*, Δ GO*, and Δ GOH*, which correspond to OOH*, O*, and OH* adsorptions on surface of catalyst are calculated as follows:

$$\Delta G_{O} = G_{O} = G_{O} = G_{Cata} + G_{H2O(1)} - G_{cata} - 2G_{OH}$$

$$\triangle G_{OH} = G_{OH} = G_{cata} - G_{cata} - G_{OH}$$

The Gibbs free energy of reactions involving electron/proton transfer was calculated based on the computational hydrogen electrode (CHE) model. The Gibbs free energy difference ($\triangle G$) of each elementary reaction was given by the following equation:

$$\triangle G(U) = \triangle E - \triangle E_{ZPE} + T \triangle S + \triangle G_{Ph} + \triangle G_{U}$$

where $\triangle E$ is the total energy change obtained from DFT calculations, $\triangle E_{ZPE}$ is the change in zeropoint energy, T is temperature (298.15 K) and $\triangle S$ is the change in entropy, $\triangle G_{pH} = k_B T \ln 10 \times pH$, where k_B is the Boltzmann constant, and pH = 14 for 1 M KOH medium, $\triangle G_U = -neU$, where U is the electrode potential with respect to the normal hydrogen electrode, e is the transferred electron, and n is the number of transferred electron. Hence, the calculated equilibrium potential (U_0) for ORR at pH = 14 was 0.4 V vs NHE where the start state and final state are at the same energy level. The applied limited potential (U_L) is defined as the applied potential where the whole ORR starts to occur.

$$U_{L} = \{-\max[\triangle G_{OOH*}, \triangle G_{O*} - \triangle G_{OOH*}, \triangle G_{OH*} - \triangle G_{O*}, -4.92 \text{ eV} - \triangle G_{OH*}]\}/e$$

Then the overpotential is equal to the value of U_L minus U_0 .

$$\eta = U_0 - U_L$$

The free energy of H₂O(1) was calculated based on $G_{H2O(g)}$ obtained from DFT calculations and derived as $G_{H2O(1)} = G_{H2O(g)} + RT \times \ln(p/p0)$, where R is the ideal gas constant, T = 298.15K, p = 0.035 bar, and p0 = 1 bar. Due to the limitation of DFT calculations in accurately reflecting the true nature of oxygen molecule with high-spin ground state, the GO₂(g) was derived as $G_{O2(g)} = 2G_{H2O(1)}$ $-2G_{H2}$ –4.92 eV.

Supplementary Figures

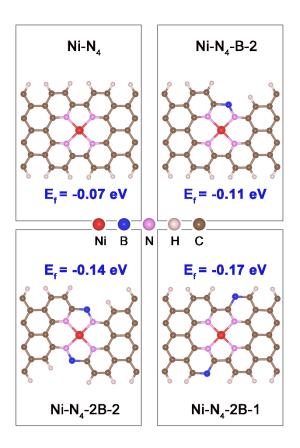


Fig. S1. The calculated models and the corresponding formation energies of Ni-N₄ and B doped Ni-

N4.

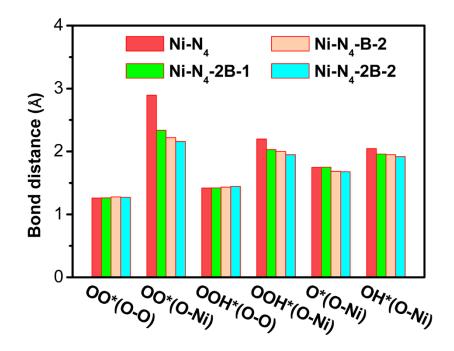


Fig. S2. The bond distances of various O_xH_y for the optimized Ni-N₄ and B doped Ni-N₄.

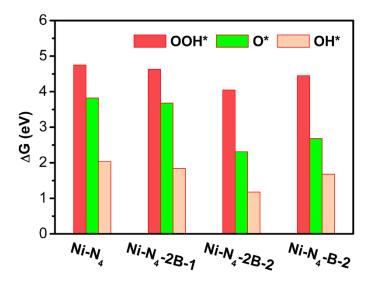


Fig. S3. The adsorption free energy of the intermediates (OOH*, O^* and OH^*) for Ni-N₄ and B doped Ni-N₄.

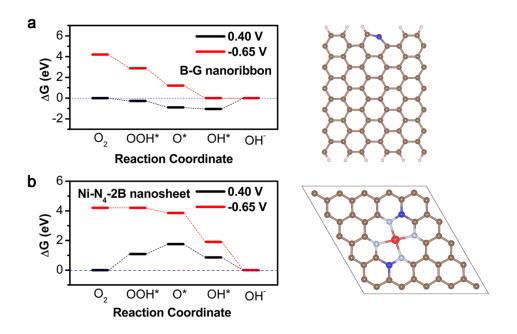


Fig. S4. The free energy diagrams for ORR on the Ni-N₄-2B nanosheet and B-doped graphene

nanoribbon.

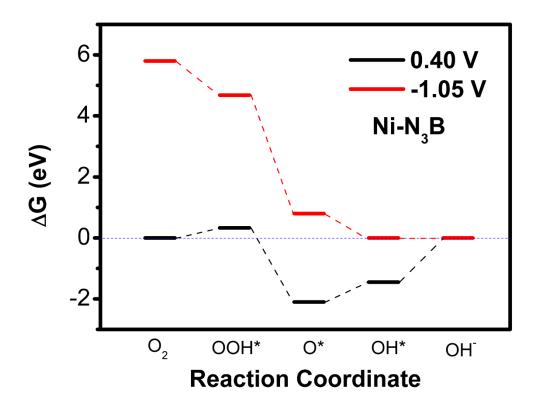


Fig. S5. The free energy diagrams for ORR on the Ni-N₃B.

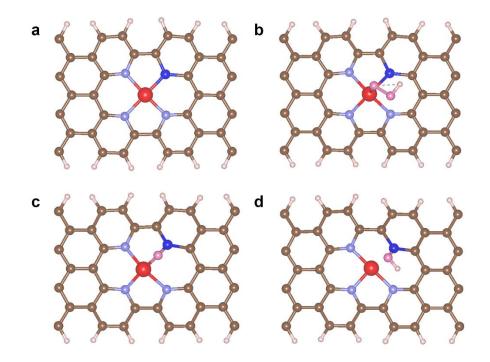


Fig. S6. The calculated models of (a) $Ni-N_3B$ and its intermediates (b-c) toward ORR.

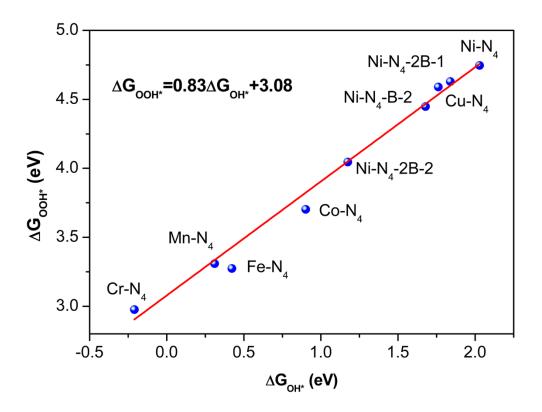


Fig. S7. The scaling relations of ΔG_{OOH*} vs ΔG_{OH*} for various M-N₄ structures and B-doped Ni-N₄ structures.

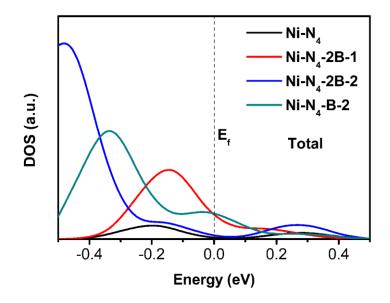


Fig. S8. The total DOS of the B-doped Ni-N₄ systems and Ni-N₄ structure.

Materials	RDS	Overpotential η (V)	References
Ni-N4	$O_2 + H_2O + e \rightarrow OOH + OH^-$	1.05	This work
Ni-N4-B-2	$O_2 + + H_2O + e^- \rightarrow OOH^+ + OH^-$	0.75	
Ni-N4-2B-1	$O_2 + + H_2O + e^- \rightarrow OOH^+ + OH^-$	0.94	
Ni-N4-2B-2	$O_2 + + H_2O + e^- \rightarrow OOH^+ + OH^-$	0.35	
Ni-N3B	OH*+e ⁻ →OH ⁻ +*	1.45	
Mn-N3-Gra	OH*+e ⁻ →OH ⁻ +*	0.56	- 1
Co-N3-Gra	OH*+e ⁻ →OH ⁻ +*	0.89	
Ni-N ₂	OH*+e ⁻ →OH ⁻ +*	0.43	2
Ni ₃ (HITP) ₂	$O_2 + H_2O + e \rightarrow OOH + OH^-$	0.63	3
Co-N ₄ -G	$O_2 + + H_2O + e^- \rightarrow OOH^+ + OH^-$	0.82	4
Ni-G	$O^{+}H_2O^{+}e^{-}\rightarrow OH^{+}OH^{-}$	1.71	- 5
Si-G	OH*+e ⁻ →OH ⁻ +*	1.98	
Au-G	$O^{+}H_2O^{+}e^{-}\rightarrow OH^{+}OH^{-}$	0.79	
Fe-G	OH*+e ⁻ →OH ⁻ +*	1.21	
Ag-G	$O^{+}H_2O^{+}e^{-}\rightarrow OH^{+}OH^{-}$	1.08	
Co-G	OH*+e ⁻ →OH ⁻ +*	1.05	
WN3	$O^{+}H_2O^{+}e^{-}\rightarrow OH^{+}OH^{-}$	1.59	6
WN ₄	OH*+e ⁻ →OH ⁻ +*	0.58	
WN5	OH*+e ⁻ →OH ⁻ +*	0.38	
B-G	$O_2 + H_2O + e^- \rightarrow OOH^* + OH^-$	0.72	7
Pt (111)	OH*+e ⁻ →OH ⁻ +*	0.45	8

Table S1. The ORR catalytic activity of B-doped Ni- N_4 and their similar structures M- N_xC .

References

[1] Q. Gao, A DFT study of the ORR on $M-N_3$ (M = Mn, Fe, Co, Ni, or Cu) co-doped graphene with moiety-patched defects, Ionics, (2019), DOI: 10.1007/s11581-019-03376-9.

[2] S. Kattel, P. Atanassov, B. Kiefer, Density Functional Theory Study of Ni–N_x/C Electrocatalyst for Oxygen Reduction in Alkaline and Acidic Media, J. Phys. Chem. C, 116 (2012) 17378-17383.

[3] F. Sun, X. Chen, Oxygen reduction reaction on Ni₃(HITP)₂: A catalytic site that leads to high activity, Electrochem. Commun, 82 (2017) 89-92.

[4] M. Xiao, H. Zhang, Y. Chen, J. Zhu, L. Gao, Z. Jin, J. Ge, Z. Jiang, S. Chen, C. Liu, W. Xing, Identification of binuclear Co_2N_5 active sites for oxygen reduction reaction with more than one magnitude higher activity than single atom CoN_4 site, Nano Energy, 46 (2018) 396-403.

[5] X. Chen, S. Chen, J. Wang, Screening of catalytic oxygen reduction reaction activity of metal-doped graphene by density functional theory, App. Surf. Sci., 379 (2016) 291-295.

[6] Z. Chen, W. Gong, Z. Liu, S. Cong, Z. Zheng, Z. Wang, W. Zhang, J. Ma, H. Yu, G. Li, W. Lu, W. Ren, Z. Zhao, Coordination-controlled single-atom tungsten as a non-3d-metal oxygen reduction reaction electrocatalyst with ultrahigh mass activity, Nano Energy, 60 (2019) 394-403.

[7] Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Origin of the Electrocatalytic Oxygen Reduction Activity of Graphene-Based Catalysts: A Roadmap to Achieve the Best Performance, J. Am. Chem. Soc, 136 (2014) 4394-4403.

[8] J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jónsson,Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode, J. Phys. Chem. B, 108 (2004)17886-17892.