Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

Metallic Nickel-Cobalt Phosphide/Multilayer Graphene composite for high-performance Supercapacitors

Minmin Shuai¹, Jianhui Lin¹, Wenzhi Wu¹, Huifang Kuang¹, Wengong Zhang¹, Qidan

Ling¹, Hong Chen^{1*} and Sridhar Komarneni²

¹Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, PR China.

²Materials Research Institute and Department of Ecosystem Science and Management, 204 Energy and the Environment Laboratory, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA.

Materials	Electrolyte	3-electrode/ 2-electrode	Current density(A/g)	Specific capacitance(F/g)
CoP ¹	6M KOH	3	1	449.4F/g
PrGO/NiCoP ²	ЗМ КОН	3	1	2586.9F/g
Ni ₂ P@5%GR ³	ЗМ КОН	3	1	672.4F/g
Ni ₈ Co ₁ P ⁴	ЗМ КОН	3	1	1448F/g
P-CSs@Ni ₁ Co ₂ PNSs ⁵	2M KOH	3	1	1040.3F/g
CoP ⁶	6M KOH	3	1	560F/g
Ni ₂ P-Ni@NC@G ⁷	ЗМ КОН	3	1	2335.5F/g
This work	ЗМ КОН	3	1	1419.6

Table S1. Comparison of Specific capacitance data in the literature with the current data from this work.

Figure S1. Coulombic efficiency versus cycle number of NiCoP/MLG at a current density of 5 A/g.

Table S2. Comparison of performance of the device with other existing studies in the literature

Device	I (A/g)	C (F/	g) E (WI	h/kg) P ((W/kg)
NiCoP@NF//AC8		1 13	3 27	647	
NiCoP/NiCo-OH3	0//PC ⁹	1	150	34 7	75
NiCoP nanoplates/	/Gr ¹⁰	2	43.8 mAh/g	g 32.9	1301
CoP//NG ¹¹	0.5	68.8	21.4	373	
P-CSs@Ni ₁ -Co ₂ -P	NSs//A	AC ⁵ 1	52.8	16.5	750
AC//Ni ₈ -Co ₁ -P ⁴	1	89	31.6	270	
NiCoP@C@LDHs	s//AC ¹²	1	135.8	48.3	800
This work	1	103	32.19	741.65	;

Figure S2. Capacitance retention at a function of cycle number at 3 A g^{-1}

References

- 1. L. Ding, K. Zhang, L. Chen, Z. Yu, Y. Zhao, G. Zhu, G. Chen, D. Yan, H. Xu and A. Yu, *Electrochim. Acta.*, 2019, **299**, 62-71.
- 2. T. Dong, X. Zhang, P. Wang, H.-S. Chen and P. Yang, *Carbon*, 2019, **149**, 222-233.
- 3. W. Du, S. Wei, K. Zhou, J. Guo, H. Pang and X. Qian, *Mater. Res. Bull.*, 2015, **61**, 333-339.
- 4. R. Ding, X. Li, W. Shi, Q. Xu and E. Liu, *Chem. Eng. J.*, 2017, **320**, 376-388.
- 5. T. Dang, L. Wang, D. Wei, G. Zhang, Q. Li, X. Zhang, Z. Cao, G. Zhang and H. Duan, *Electrochim. Acta.*, 2019, **299**, 346-356.
- W. Wang, L. Zhang, G. Xu, H. Song, L. Yang, C. Zhang, J. Xu and D. Jia, *Inorg. Chem.*, 2018, 57, 10287-10294.
- Y. Zhang, L. Sun, L. Bai, H. Si, Y. Zhang and Y. Zhang, *Nano Res.*, 2019, 12, 607-618.
- Y. Lan, H. Zhao, Y. Zong, X. Li, Y. Sun, J. Feng, Y. Wang, X. Zheng and Y. Du, *Nanoscale*, 2013, 00, 1-3.
- 9. X. Li, H. Wu, A. M. Elshahawy, L. Wang, S. J. Pennycook, C. Guan and J. Wang, *Adv. Funct. Mater.*, 2018, **28**, 1800036.
- 10. H. Liang, C. Xia, Q. Jiang, A. N. Gandi, U. Schwingenschl?gl and H. N. Alshareef, *Nano Energy*, 2017, **35**, 331-340.
- 11. W. Wang, Z. Li, X. Guancheng, S. Huijun, Y. Lifan, Z. Chi, X. Jinling and J. Dianzeng, *Inorg. Chem.*, 2018, **57**, 10287-10294.
- 12. Y. Zhu, Q. Zong, Q. Zhang, H. Yang, W. Du, Q. Wang, J. Zhan and H. Wang, *Electrochim. Acta.*, 2020, **334**, 135589.