Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Information

Synergistic Effect of Cobalt, Nitrogen-Codoped Hollow Carbon Sphere Hosts

for High Performance Lithium Sulfur Batteries

Qihua Li,^{ab} Jian Yang,^c Yue Zhao,^{ab} Zengcheng Zhang,^b Chao Wang,^b Hao He,^{*a} Jinghua Wu^{*bd} and Xiayin Yao^{bd}

^aKey Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China. E-mail: hehao@zzu.edu.cn

^bNingbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China. E-mail: wujh@nimte.ac.cn

^cSchool of Economics and Management, Ningbo University of Technology, Ningbo 315211, P. R. China.

^dUniversity of Chinese Academy of Sciences, Beijing 100049, P. R China

Fig. S1 SEM images of (a) Co-0.6, N@CPDA-HCS, (b) Co, N @CPDA-HCS, (c) Co-2.4,

N@CPDA-HCS and (d) Co-3, N@CPDA-HCS.

Fig. S2 SEM images of (a) the S/N@CPDA and (b) S/Co, N@CPDA-HCS.

Fig. S3 XRD patterns of Co-0.6, N@CPDA-HCS, Co, N@CPDA-HCS, Co-2.4, N@CPDA-HCS

and Co-3, N@CPDA-HCS.

Fig. S4 XRD patterns of S/N@CPDA and S/Co, N@CPDA-HCS.

Fig. S5 Aperture distribution curve of (a) N@CPDA and (b) Co, N@CPDA-HCS.

Table S1 BET parameters of N@CPDA and Co, N@CPDA-HCS.

Material	BET surface area(m ² g ⁻¹)	Total pore volume(cm ³ g ⁻¹)	Average pore diameter(nm)
N@CPDA	190	0.61	16.42
Co, N@CPDA-HCS	456	0.64	13.36

Fig. S6 High-resolution XPS spectra of S 2p in S/Co, N@CPDA-HCS.

Fig. S7 Charge and discharge voltage profiles of (a) S/Co, N@CPDA-HCS and (b) S/N@CPDA.

Fig. S8 SEM imagines of S/Co, N@CPDA-HCS before (a) and after (b) cycling.

Fig. S9 Cycling performances of (a) S/Co-0.6, N@CPDA-HCS, (b) S/Co, N@CPDA-HCS, (c) S/Co-2.4, N@CPDA-HCS and (d) S/Co-3, N@CPDA-HCS tested at a current density of 1A g⁻¹.

Electrodes	$R_{ m s}(\Omega)$	$R_{ m ct}(\Omega)$
S/N@CPDA	4.616	174.5
S/Co, N@CPDA-HCS	2.523	99.31

Table S2 Component parameters of the equivalent circuit corresponding to EIS.

Fig. S10 EIS plots of the S/Co-0.6, N@CPDA-HCS, S/Co, N@CPDA-HCS, S/Co-2.4,

N@CPDA-HCS and S/Co-3, N@CPDA-HCS.