Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information for

A two-photon AIE fluorophore as a photosensitizer for highly efficient mitochondria-targeted photodynamic therapy

Qunshou Kong, Boxuan Ma, Tao Yu, Cheng Hu, Gaocan Li*, Qing Jiang* and Yunbing Wang

National Engineering Research Center for Biomaterials Chengdu, China 610064

E-mail address: gaocanli@scu.edu.cn (G.L.). jiangq@scu.edu.cn (Q.J.).

Figure S2. ¹³C NMR spectrum of compound **1** in CDCl₃.

Figure S3. HRMS spectrum of compound 1.

Figure S4. ¹H NMR spectrum of compound **2** in CDCl₃.

Figure S5. ¹³C NMR spectrum spectrum of compound 2 in CDCl₃.

Figure S6. HRMS spectrum of compound 2.

Figure S8. ¹³C NMR spectrum of compound TBBP in CDCl₃.

Figure S9. HRMS spectrum of compound TBBP.

Figure S10. Molecular orbital amplitude plots of HOMO and LUMO of TBBP.

Figure S11. UV-Vis absorption (a) and emission spectras (b) of TBBP. ms: mixed solvents of

Toluene and CHCl₃ with volume ratio about 1:1.

Figure S12. Plots of Stokes shift (Δv) versus the solvent polarity function (Δf) for **TBBP**.

solvent	З	п	Δf
toluene	2.24	1.496	0.113098
ms	3.10	1.479	0.072100
chloroform	4.81	1.443	0.149202
ethyl acetate	6.02	1.370	0.200506
THF	7.58	1.405	0.210328
DMF	36.7	1.428	0.275158

Table S1. Solvent parameters.

Figure S13. Two-photon absorption cross-section of TBBP in DMSO/water (1:9, v/v) for TBBP.

Figure S14. Fluorescence decay curves of TBBP in solid state.

Figure S15. Cell viability assessed by MTT assay of HeLa cells incubated with different concentrations of **TBBP**.

Figure S16. Confocal fluorescence images of CCCP (10 $\mu M)$ treated Hela cells cultured with

TBBP (4.0 μM). Scale bar: 25 μm

Figure S17. Ex vivo fluorescent images of mean organs from the mice administrated with AIEgen **TBBP**.

Figure S18. UV-vis spectra of ABDA in the presence of aggregates of **TBBP** under white light irradiation in water. Concentration: 10×10^{-6} M (**TBBP**) and 5×10^{-5} M (ABDA). The absorption peak area of **Ce6**, Rose Bengal and **TBBP**. The decomposition rate constants of ABDA by **Ce6**, Rose Bengal and **TBBP**.

Compound	A	K	Φ
TBBP	19.977	0.0638	1.36
RB	8.1943	0.0144	0.75
Ce6	8.9042	0.0009	0.043

Table S2. The ¹O₂ quantum yields of **TBBP**, **RB** and **Ce6**

Figure S19. Photothermal conversion behaviors of the **TBBP** at different concentrations (5–30 μ M) under white-light irradiation for different time.

Figure S20. Cell viability of Hela cells incubated with increasing concentrations of **Ce6** under dark or white light irradiation.

Figure S21. Flow cytometric analysis of Hela cells treated with **TBBP** (a) and **Ce6** (b). The corresponding fluorescence intensity of Hela cells treated with **TBBP** (c) and **Ce6** (d) after different treatments.

Movie of real-time dynamic change of TBBP (MOV).